Step-by-step explanation:
Solve for xsin3⁡x+cos3⁡x=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">xsin3x+cos3x=1xsin3x+cos3x=1
sin3⁡x+cos3⁡x=1(sin⁡x+cos⁡x)(sin2⁡x−sin⁡x⋅cos⁡x+cos2⁡x)=1(sin⁡x+cos⁡x)(1−sin⁡x⋅cos⁡x)=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">sin3x+cos3x=1(sinx+cosx)(sin2x−sinx⋅cosx+cos2x)=1(sinx+cosx)(1−sinx⋅cosx)=1
7, 5, 1, 6, 2 Mean Absolute Deviation = 2.16
3, 6, 3, 2, 1 Mean Absolute Deviation = 1.2
the whole triangle is call an acute equilibrium triangle if that's the answer your looking for if not I need to see the whole question
D. 2.0 I think it's the correct answer...
(X,Y)=(39,69) is the answer