1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
3 years ago
5

30 POINTS

Mathematics
1 answer:
Alex777 [14]3 years ago
8 0

Answer:

Italy won the golf competition.

Step-by-step explanation:

Italy: -3 + 4 + 5 + -5 + 3 + -5 + 6 + -3 + -3

Total:  -1

Russia:-4 + 5 + -6 + 4 + 4 + 6 + -3 + -3 + -5

Total:  -2

You might be interested in
Seven million twenty thousand thirty two
Fantom [35]
That would be:

7,020,032

Hope that helps :)

4 0
3 years ago
Read 2 more answers
The cost of 3 pounds of grapes is $9.75. What is the constant of proportionality that relates the cost in dollars, y, to the num
frutty [35]

Answer:

3.75

Step-by-step explanation:

We can write a ratio to solve

3 lbs             x lbs

---------- = -----------

9.75            y dollars

Using cross products

3y = 9.75 x

Divide each side by 3

3y/3 = 9.75x/3

y =3.75x

The constant is 3.75

5 0
3 years ago
(-3)^3 Evalute<br> ,,,,,,,,,,,,,,,
MAXImum [283]

Answer: -27

Step-by-step explanation:

-3 times -3 =9

9 times -3 = -27

5 0
3 years ago
Which statement about the graph of these two functions is true?
Anarel [89]
B is true.
a is false because the -4 will cause a downward slant
c is false because f(x) intersects x axis to the right of 0
3 0
3 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
Other questions:
  • What is the multiplicative inverse of -19/26?
    10·1 answer
  • The two legs of a right triangle are 6 feet and 8 feet long. What is the perimeter of the triangle?
    9·1 answer
  • Complete the expansion of (a + b)6 with a = 1 and b = 0.3.
    8·2 answers
  • Q7:<br> Find the greatest common factor of 24,36 and 48
    15·1 answer
  • Two trains leave the same station at the same time, but are headed in opposite directions. One train travels at 70 mph and the o
    7·1 answer
  • Least common multiple of (5x-4) and (-15x+12)
    10·1 answer
  • Hi uwu pls help me with math i'm bad at it :(
    10·1 answer
  • What does creditworthiness mean?
    13·2 answers
  • Supplementary angles equation<br> XY Bisects Solve X find m Find M Find m
    11·1 answer
  • Solve for angle 1 i got an answer but i dont know if it’s right
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!