Since the constant has been moved to the left side, you can move on to the next step which is adding (b/2)² to both sides of the equation.
h² + 14h + (14/2)² = -31 + (14/2)²
Simplify the parenthesis and exponent.
h² + 14h + 7² = -31 + 7²
h² + 14h + 49 = -31 + 49
h² + 14h + 49 = 18
Factor the expression of the left.
(h + 7)(h + 7) = 18
Take the square root of both sides.
√(h + 7)(h + 7) = ± √9 • 2
(h + 7) = ± 3√2
h + 7 = ± 3√2
Subtract 7 from both sides.
You solutions are:
h = -7 + 3√2 → -2.7573 → -2.76
h = -7 - 3√2 → -11.2426 → -11.24
Answer:
Step-by-step explanation:
The absolute value of z is the distance between the point graphed from the complex number and the origin on a complex plane. In a complex plane, the x axis is replaced by R, real numbers, and the y axis is replaced by i, the complex part of the complex number. Our real number is positive 3 and the complex number is -5, so we go to the right 3 and then down 5 and make a point. Connect that point to the origin and then connect the point to the x axis at 3 to construct a right triangle that has a base of 3 and a length of -5. To find the distance of the point to the origin is to find the length of the hypotenuse of that right triangle using Pythagorean's Theorem. Therefore:
and
and

5y - 2x + 1 = 0.
5y = 2x-1.
y = 2/5 x - 2/5
this tells us that tan(theta) = 2/5
sin(theta)/sqrt(1-sin^2(theta)) = 2/5
x/sqrt(1-x^2)=2/5
x^2/(1-x^2)=4/25
25x^2=4-4x^2
29x^2=4
x^2=4/29
x = -2/sqrt(29) because quadrant III
cos(x) = sqrt(1-4/29) = -5/sqrt(29)
tan(theta)=2/5
cos(theta)=-5/sqrt(29)
sin(theta)=-2/sqrt(29)
cot(theta)=5/2
sec(theta)=-sqrt(29)/5
csc(theta)=-sqrt(29)/2
(d1/d2)×d3=d4
d1=real distance 93million miles of earth
d2=model distance of earth
d3=model distance of Venus
d4= real distance in million miles of Venus
(93/1.2)×0.86= 66.65 million miles
Answer:
x=3
Step-by-step explanation:
It is pretty simple.
x = 3 means literally just a vertical line at +3 on the x-axis.
In contrast, y = 3 would mean a horizontal line at +3 on the y-axis.
If you would like to see this for yourself pull-up desmos on your browser and type it into the graphing calculator of desmos.