Answer:

Step-by-step explanation:
![\displaystyle = \frac{x^2(y-2)}{3y} \\\\Put \ x = 3, \ y = -1\\\\= \frac{(3)^2(-1-2)}{3(-1)}\\\\= \frac{9(-3)}{-3} \\\\= 9 \\\\ \rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%3D%20%5Cfrac%7Bx%5E2%28y-2%29%7D%7B3y%7D%20%5C%5C%5C%5CPut%20%5C%20x%20%3D%203%2C%20%5C%20y%20%3D%20-1%5C%5C%5C%5C%3D%20%5Cfrac%7B%283%29%5E2%28-1-2%29%7D%7B3%28-1%29%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B9%28-3%29%7D%7B-3%7D%20%5C%5C%5C%5C%3D%209%20%5C%5C%5C%5C%20%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3><h3>Peace!</h3>
1)4-8=-4
2)3+4-5=2
3) -13
4)8+12=20
5) -14
The 2 angles in a complement would be (in degrees) 65 and 25
Complementary angles = 90
x+y =90
y=x+24
substitute this in to the equation
x+x+24=90
2x+24=90
subtract 24 from each side
2x = 66
divide by 2
x=33
y = 33+24
y=57
Answer: 33, 57
X + x - 5 + 3x + 25 = 180
5x + 20 = 180
5x = 160
x = 32
m<F = x - 5
m<F = 32 - 5
m<F = 27