1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
3 years ago
9

Identify the horizontal asymptote of f(x) = quantity 7 x plus 1 over quantity 2 x minus 9.

Mathematics
1 answer:
salantis [7]3 years ago
6 0
You just divide the leading coefficients, the answer is 7/2
You might be interested in
Dada la sucesión an = 1700 + 4,1· n2 + 304,9· n
shutvik [7]

Concluimos que la opción correcta es <em>"Solo II"</em>.

Una expresión es una sucesión aritmética si y solo si existe entre dos elementos <em>consecutivos</em> cualesquiera de la serie la misma diferencia. La sucesión aritmética es definida por una expresión de la forma:

a_{n} = a + b\cdot n, n\in \mathbb{N} (1)

Donde a,b son coeficientes de la sucesión.

Asimismo, una expresión es una sucesión geométrica si y solo si entre dos elementos <em>consecutivos</em> cualesquiera de la serie existe la misma razón. La sucesión geométrica es definida por una expresión de la forma:

a_{n} = a\cdot r^{b\cdot n}, n\in \mathbb{N} (2)

Donde a, b, r son coeficientes de la sucesión.

Por último, una expresión es una sucesión monótona creciente si dados dos elementos <em>consecutivos</em> de una serie, el elemento posterior es siempre mayor que el elemento anterior. Matemáticamente, debe satisfacerse la siguiente condición:

\frac{a_{n+1}}{a_{n}} > 1, n\in \mathbb{N} (3)

Esta claro por inspección directa que la sucesión dada no es aritmética ni geométrica y cabe comprobar si es monótona creciente. Valiéndonos de (3), realizamos las operaciones algebraicas pertinentes:

r = \frac{1700 + 4,1\cdot (n+1)^{2}+304,9\cdot (n+1)}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot (n^{2}+2\cdot n +1) +304,9\cdot (n+1)}{1700 + 4.1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot n^{2}+304,9\cdot n+4,1\dot (2\cdot n +1) +304.9}{1700+4,1\cdot n^{2}+304,9\cdot n}

r = 1 + \frac{8,2\cdot n +309}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

Como puede apreciarse, r > 1. Por tanto, la sucesión es monótona y creciente.

En consecuencia, concluimos que la opción correcta es <em>"Solo II"</em>.

Invitamos cordialmente a leer esta pregunta sobre sucesiones: brainly.com/question/21709418

4 0
3 years ago
Ok if you have 734
White raven [17]
The answer you will need is seven hop I was helpful do me a favor and click on thank on the bottom
5 0
3 years ago
8th grade math! BRAINLIEST will be given.​
trapecia [35]

Answer:

x = 48

Step-by-step explanation:

14^2 + b^2 = 50^2

196 + b^2 = 2500

-196           -196

b^2 = 2304

√b^2 = √2304

b = 48

3 0
3 years ago
Read 2 more answers
Any 10th grader solve it <br>for 50 points​
kkurt [141]

Answer:

\frac{a}{p}\times (q-r)+\frac{b}{q}\times (r-p)+\frac{c}{r}\times (p-q)\neq 0  is proved for the sum of pth, qth and rth terms of an arithmetic progression are a, b,and c respectively.

Step-by-step explanation:

Given that the sum of pth, qth and rth terms of an arithmetic progression are a, b and c respectively.

First term of given arithmetic progression is A

and common difference is D

ie., a_{1}=A and common difference=D

The nth term can be written as

a_{n}=A+(n-1)D

pth term of given arithmetic progression is a

a_{p}=A+(p-1)D=a

qth term of given arithmetic progression is b

a_{q}=A+(q-1)D=b and

rth term of given arithmetic progression is c

a_{r}=A+(r-1)D=c

We have to prove that

\frac{a}{p}\times (q-r)+\frac{b}{q}\times (r-p)+\frac{c}{r}\times (p-q)=0

Now to prove LHS=RHS

Now take LHS

\frac{a}{p}\times (q-r)+\frac{b}{q}\times (r-p)+\frac{c}{r}\times (p-q)

=\frac{A+(p-1)D}{p}\times (q-r)+\frac{A+(q-1)D}{q}\times (r-p)+\frac{A+(r-1)D}{r}\times (p-q)

=\frac{A+pD-D}{p}\times (q-r)+\frac{A+qD-D}{q}\times (r-p)+\frac{A+rD-D}{r}\times (p-q)

=\frac{Aq+pqD-Dq-Ar-prD+rD}{p}+\frac{Ar+rqD-Dr-Ap-pqD+pD}{q}+\frac{Ap+prD-Dp-Aq-qrD+qD}{r}

=\frac{[Aq+pqD-Dq-Ar-prD+rD]\times qr+[Ar+rqD-Dr-Ap-pqD+pD]\times pr+[Ap+prD-Dp-Aq-qrD+qD]\times pq}{pqr}

=\frac{Arq^{2}+pq^{2} rD-Dq^{2} r-Aqr^{2}-pqr^{2} D+qr^{2} D+Apr^{2}+pr^{2} qD-pDr^{2} -Ap^{2}r-p^{2} rqD+p^{2} rD+Ap^{2} q+p^{2} qrD-Dp^{2} q-Aq^{2} p-q^{2} prD+q^{2}pD}{pqr}

=\frac{Arq^{2}-Dq^{2}r-Aqr^{2}+qr^{2}D+Apr^{2}-pDr^{2}-Ap^{2}r+p^{2}rD+Ap^{2}q-Dp^{2}q-Aq^{2}p+q^{2}pD}{pqr}

=\frac{Arq^{2}-Dq^{2}r-Aqr^{2}+qr^{2}D+Apr^{2} -pDr^{2}-Ap^{2}r+p^{2}rD+Ap^{2}q-Dp^{2}q-Aq^{2}p+q^{2}pD}{pqr}

\neq 0

ie., RHS\neq 0

Therefore LHS\neq RHS

ie.,\frac{a}{p}\times (q-r)+\frac{b}{q}\times (r-p)+\frac{c}{r}\times (p-q)\neq 0  

Hence proved

5 0
3 years ago
13.1: Equivalent Expressions
scoundrel [369]

Distributive Property:  a ( b + c) = (a*b) + (a*c)

b)   x(x + 9) =  x*x + 9*x

               = x² + 9x    

c)  x² - 18x

     x² = x * x

  18x  = 18 *x

G C F = x

Greatest common factor in both the terms is 'x'.Take the common variable from both the terms.

x² - 18x = x*x - 18*x

            = x (x - 18)

           

Standard form.                Factored form

      x²                                     x*x

x²  +  9x                             x(x +9)

    x² - 18x                           x(x - 18)  

-x² + 10x                             x(-x + 10) = x(10 -x)

-x² - 2.75x                          -x(x + 2.75)

3 0
2 years ago
Other questions:
  • What can be concluded about the distance from point B to CD?
    6·1 answer
  • How many 45 cent stamps can you buy with 9 $
    13·2 answers
  • smallest cube has a edge length of 6 inches. what are the lengths of the other cubes if the ratios of similarity to the smallest
    6·1 answer
  • enthan entered a canoe race. he rowed 4 1/2 miles in 1/2 hour. what is his average speed in miles per hour
    11·2 answers
  • Use mental math to complete the pattern5×6
    12·1 answer
  • One teacher wants to give each student 1 1/5 slices of pizza. If the teacher has 12 slices of pizza, then how many students will
    12·1 answer
  • For each sequence shown find the<br> growth factor or rate of change.<br> 5, 15, 25, 35, 45
    14·1 answer
  • Which three-dimensional figure has exactly three rectangular faces?
    6·2 answers
  • Please help if you know the pythagorean thereom
    14·2 answers
  • 3^4 + 2 • 5 = (input whole numbers only.) <br> (please leave explanation)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!