Answer:
A. 40x + 10y + 10z = $160
B. 8 Roses, 2 lilies and 2 irises
C.
1. 20x + 5y + 5z = $80
2. 4x + y + z = $16
3. 8x + 2y + 2z = $32
Step-by-step explanation:
Cost for each flower = $160/5 = $32
So we have $32 for each bouquet consisting of 12 flowers each.
Roses = x = $2.50 each
lilies = y = $4 each
irises = z = $2 each
8x + 2y + 2z = $32
8($2.50) + 2($4) + 2($2) = $32
$20 + $8 + $4 = $32
$32 = $32
a. Maximum budget is $160
40x + 10y + 10z = $160
40($2.50) + 10($4) + 10($2) = $160
$100 + $40 + $20 = $160
$160 = $160
b. From above
8x + 2y + 2z = $32
8 Roses, 2 lilies and 2 irises
c. No. There are other solutions If total cost is not limited
1. 20x + 5y + 5z
20($2.50) + 5($4) + 5($2)
$50 + $20 + $10
= $80
2. 4x + y + z
4($2.50) + $4 + $2
$10 + $4 + $2
= $16
3. 8x + 2y + 2z
8($2.50) + 2($4) + 2($2)
$20 + $8 + $4
= $32
<h2>
Answer:</h2>
The answer is 25 minutes
<h2>
Step-by-step explanation:</h2>
As we see the median time given in minutes before the installation was 53 minutes and after the installation it became 28 so by taking the difference which is 53 - 28 gives us 25 minutes.
If Kyle starts with $600 and wants to end with (at least) $300 She can withdraw up to $600−$300=$300
If he withdraw 20$/ week the 300 will last for 300/20 = 15 weeks
WE KNOW THAT THE VOLUME OF THE CUBE IS '
V=a^3
our a=7
V=343 cm^3
Answer:
Step-by-step explanation:
6.50$