Answer:
3. r = -8
4. x = -5
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define equation</u>
2(-5r + 2) = 84
<u>Step 2: Solve for </u><em><u>r</u></em>
- Divide 2 on both sides: -5r + 2 = 42
- Subtract 2 on both sides: -5r = 40
- Divide -5 on both sides: r = -8
<u>Step 3: Check</u>
<em>Plug in r into the original equation to verify it's a solution.</em>
- Substitute in <em>r</em>: 2(-5(-8) + 2) = 84
- Multiply: 2(40 + 2) = 84
- Add: 2(42) = 84
- Multiply: 84 = 84
Here we see that 84 does indeed equal 84.
∴ r = -8 is a solution of the equation.
<u>Step 4: Define equation</u>
264 = -8(-8 + 5x)
<u>Step 5: Solve for </u><em><u>x</u></em>
- Divide both sides by -8: -33 = -8 + 5x
- Add 8 to both sides: -25 = 5x
- Divide 5 on both sides: -5 = x
- Rewrite: x = -5
<u>Step 6: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in<em> x</em>: 264 = -8(-8 + 5(-5))
- Multiply: 264 = -8(-8 - 25)
- Subtract: 264 = -8(-33)
- Multiply: 264 = 264
Here we see that 264 does indeed equal 264.
∴ x = -5 is a solution of the equation.
Answer:
Step-by-step explanation:
In math, slope is the ratio of the vertical and horizontal changes between two points on a surface or a line. The vertical change between two points is called the rise, and the horizontal change is called the run. The slope equals the rise divided by the run: . This simple equation is called the slope formula.
M=6/5 and n = sqrt(2), is rational (but not an integer) and n is irrational.
The case with n = sqrt(9)=3, is not a solution. The case with m=4pi neither.
The last case is m = 6/2=3, integer, so neither works.
So, it is the one with m=6/5 and sqrt(2)
Answer:
Step-by-step explanation:
Convert mixed fraction to improper fraction.
÷
=
÷ 
Now use K C F method
K - Keep the first fraction
C - Change the division operation to multiplication
F- Flip the second number
