1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
3 years ago
10

PLEASEEEEEE HELPPPPPPPPPP MEEEEEEEEEEEEEEEE

Mathematics
1 answer:
polet [3.4K]3 years ago
3 0

Answer:

120.2 or in other words, the answer is the last option, D

You might be interested in
Approximate the square root value of 5 to the nearest Hundredth (50 points and will give most brainiest answer)
Softa [21]

Answer:The approximate square root is 2.23

Step-by-step explanation:√ 5  = 2.23

Thus:    2.23  x  2.23 = 5

6 0
3 years ago
Find maclaurin series
Mumz [18]

Recall the Maclaurin expansion for cos(x), valid for all real x :

\displaystyle \cos(x) = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!}

Then replacing x with √5 x (I'm assuming you mean √5 times x, and not √(5x)) gives

\displaystyle \cos\left(\sqrt 5\,x\right) = \sum_{n=0}^\infty (-1)^n \frac{\left(\sqrt5\,x\right)^{2n}}{(2n)!} = \sum_{n=0}^\infty (-5)^n \frac{x^{2n}}{(2n)!}

The first 3 terms of the series are

\cos\left(\sqrt5\,x\right) \approx 1 - \dfrac{5x^2}2 + \dfrac{25x^4}{24}

and the general n-th term is as shown in the series.

In case you did mean cos(√(5x)), we would instead end up with

\displaystyle \cos\left(\sqrt{5x}\right) = \sum_{n=0}^\infty (-1)^n \frac{\left(\sqrt{5x}\right)^{2n}}{(2n)!} = \sum_{n=0}^\infty (-5)^n \frac{x^n}{(2n)!}

which amounts to replacing the x with √x in the expansion of cos(√5 x) :

\cos\left(\sqrt{5x}\right) \approx 1 - \dfrac{5x}2 + \dfrac{25x^2}{24}

7 0
2 years ago
Explain how to estimate 368+231
alina1380 [7]
Hi there,

368 + 231 = 599

Hope this helps :)
7 0
3 years ago
What is the first quartile, Q1, of the data represented by the box plot?
atroni [7]
In this box plot 12.5 would be your answer
5 0
3 years ago
Read 2 more answers
True or False. There are values of t so that sin t =.35 and cos t =.6
IceJOKER [234]
It is a completely false statement that there <span>are values of t so that sin t =.35 and cos t =.6. The correct option among the two options that are given in the question is the second option. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • assume that when adults with smartphones are randomly selected, 45% use them in meetings or classes. If 6 adult smartphone users
    12·1 answer
  • In quadrilateral PQRS, PQ= 4x-15, QR=4x+20, RS=3x+5 and SP=6x-20. What vale of x verifies that quadrilateral PQRS is a parallelo
    15·1 answer
  • On a ferris wheel, Sarah observes that it takes 45 seconds for her chair to complete a full revolution. Her chair is 30 feet fro
    12·1 answer
  • Find the equation of the line that passes through the point left (-9,12) and is perpendicular to the line y=3/2x-1/2. Write the
    12·1 answer
  • A new car sells for $30,000. The value of the car decreases by 16% annually. After how many years will the car be worth less tha
    6·1 answer
  • Expand<br> (2x – 3)^4 <br> Someone help please
    14·1 answer
  • Pls i need this asap
    5·1 answer
  • Which set of measurements can represent the lengths of a triangle's sides? Classify each set of lengths as a Triangle or Not a t
    9·1 answer
  • Help me PLs..Brainly reward <br><br> -3(x - 4/3) &lt; 6
    8·1 answer
  • Molly is excited to have fresh basil at home. She buys a basil plant that is 90 millimeters tall and puts it on her kitchen wind
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!