<em>Question:</em>
The area of the kite is 48 cm². What are the lengths of the diagonals PR and QS?
________
<em>Solution:</em>
You can split the kite into two isosceles triangles: PSR and PQR.
Assume that both diagonals intersect each other at the point O.
• Area of the triangle PSR:
m(PR) · m(OS)
A₁ = ————————
2
(x + x) · x
A₁ = ——————
2
2x · x
A₁ = ————
2
A₁ = x² (i)
• Area of the triangle PQR:
m(PR) · m(PQ)
A₂ = ————————
2
(x + x) · 2x
A₂ = ——————
2
2x · 2x
A₂ = ————
2
4x²
A₂ = ———
2
A₂ = 2x² (ii)
So the total area of the kite is
A = A₁ + A₂ = 48
Then,
x² + 2x² = 48
3x² = 48
48
x² = ———
3
x² = 16
x = √16
x = 4 cm
• Length of the diagonal PR:
m(PR) = x + x
m(PR) = 2x
m(PR) = 2 · 4
m(PR) = 8 cm
<span>• </span>Length of the diagonal SQ:
m(SQ) = x + 2x
m(SQ) = 3x
m(SQ) = 3 · 4
m(SQ) = 12 cm
I hope this helps. =)
Tags: <em>polygon area triangle plane geometry</em>
the answer is D, because the “ a “ thats alone has an invisible one in front of it, so it’ll be 1a+2a+3a+4a
The inside angles of the triangle add to equal 180 and so does m/FEG with unknown triangle angle.
x+2x = x+40
2x = 40
x = 20
mFEG
= 20 + 40
= 60
answer C
Answer:
so the final answer is =17
Step-by-step explanation:
9+12/3=13+4/2=2+1*2=2 the answer is 13+2+2=17