The plants grow because of the energy transferred from the sun
Reaction which breaks down complex molecules into simpler ones n release energy
The correct answer is the last statement.
If the regulatory serine is mutated to alanine, then acetyl-CoA carboxylase will get activated spontaneously and will produce malonyl-CoA. The increased concentrations of malonyl-CoA will obstruct the oxidation of fatty acids by preventing the entry of fatty acids into the mitochondria.
It is because the AMP-activated protein kinase phosphorylates the serine residues of acetyl-CoA carboxylase to inactivate it. If a mutation occurs in such residues, then the AMPL cannot phosphorylate acetyl-CoA carboxylase and this enzyme will get activated spontaneously.
In such a situation, there will be more than sufficient production of malonyl-CoA, which will inhibit the admittance of more fatty acid getting inside the mitochondria; this will indirectly prevent the oxidation of fatty acids.
Answer:
As long as there is enzyme and hydrogen peroxide present in the solution, the reaction continues and foam is produced. Once one of both compounds is depleted, the product formation stops. If you do not add dish soap to the reaction, you will see bubbles generated but no stable foam formation.
Explanation:
I believe it is the second one not 100% sure so don't blame me if you fail.