Answer:
(1) TRUE.
(2) FALSE.
(3) FALSE.
(4) TRUE.
(5) FALSE.
Step-by-step explanation:
(1) 

Thus, the equation is TRUE.
(2) 

Thus, the equation is FALSE.
(3) ![4^{\frac{1}{2} } = \sqrt[4]{64}](https://tex.z-dn.net/?f=4%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%3D%20%5Csqrt%5B4%5D%7B64%7D)
![4^{\frac{1}{2} }= \sqrt{4} = 2\\\\\sqrt[4]{64} = (64)^{\frac{1}{4} } = (2^6)^{\frac{1}{4} }= 2^{\frac{6}{4} } = 2^{\frac{3}{2} }=(\sqrt{2} )^3 = (\sqrt{2} \times \sqrt{2} \times \sqrt{2} ) = 2\sqrt{2}](https://tex.z-dn.net/?f=4%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%20%5Csqrt%7B4%7D%20%3D%202%5C%5C%5C%5C%5Csqrt%5B4%5D%7B64%7D%20%20%3D%20%2864%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%3D%20%282%5E6%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%3D%202%5E%7B%5Cfrac%7B6%7D%7B4%7D%20%7D%20%3D%202%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%3D%28%5Csqrt%7B2%7D%20%29%5E3%20%3D%20%28%5Csqrt%7B2%7D%20%20%5Ctimes%20%5Csqrt%7B2%7D%20%20%5Ctimes%20%5Csqrt%7B2%7D%20%29%20%3D%202%5Csqrt%7B2%7D)
Thus, the equation is FALSE.
(4) ![2^8 = (\sqrt[3]{16} )^6](https://tex.z-dn.net/?f=2%5E8%20%3D%20%28%5Csqrt%5B3%5D%7B16%7D%20%29%5E6)
![2^8 = 256\\\\ (\sqrt[3]{16} )^6 = (16)^{\frac{6}{3} } = (2^4)^{\frac{6}{3} } = (2)^{\frac{24}{3} } = 2^8 = 256](https://tex.z-dn.net/?f=2%5E8%20%3D%20256%5C%5C%5C%5C%20%28%5Csqrt%5B3%5D%7B16%7D%20%29%5E6%20%3D%20%2816%29%5E%7B%5Cfrac%7B6%7D%7B3%7D%20%7D%20%3D%20%282%5E4%29%5E%7B%5Cfrac%7B6%7D%7B3%7D%20%7D%20%3D%20%282%29%5E%7B%5Cfrac%7B24%7D%7B3%7D%20%7D%20%3D%202%5E8%20%3D%20256)
Thus, the equation is TRUE.
(5) 

Thus, the equation is FALSE.
You’re answer should be 60
Answer:
11.02-9.91= 1.11
Step-by-step explanation:
|-11.02| - |-9.91| (First solve in absolute)
11.02 - 9.91 (any values outside absolute becomes positive)
1.11=Ans
Answer:
q = -8, k = 2.
r = -6.
Step-by-step explanation:
f(x) = (x - p)^2 + q
This is the vertex form of a quadratic where the vertex is at the point (p, q).
Now the x intercepts are at -6 and 2 and the curve is symmetrical about the line x = p.
The value of p is the midpoint of -6 and 2 which is (-6+2) / 2 = -2.
So we have:
f(x) = 1/2(x - -2)^2 + q
f(x) = 1/2(x + 2)^2 + q
Now the graph passes through the point (2, 0) , where it intersects the x axis, therefore, substituting x = 2 and f(x) = 0:
0 = 1/2(2 + 2)^2 + q
0 = 1/2*16 + q
0 = 8 + q
q = -8.
Now convert this to standard form to find k:
f(x) = 1/2(x + 2)^2 - 8
f(x) = 1/2(x^2 + 4x + 4) - 8
f(x) = 1/2x^2 + 2x + 2 - 8
f(x) = 1/2x^2 + 2x - 6
So k = 2.
The r is the y coordinate when x = 0.
so r = 1/2(0+2)^2 - 8
= -6.