1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
8

Please help me solve this I’ll give you all my points

Mathematics
2 answers:
4vir4ik [10]3 years ago
7 0
170 Is the answer! Good luck
alexgriva [62]3 years ago
5 0

Answer:

170

Step-by-step explanation:

You might be interested in
-3 + 5n &gt; -13 <br> i need help on this someone please help
Butoxors [25]

Answer:

n > -2

Step-by-step explanation:

5n > -10

n > -2

8 0
3 years ago
Read 2 more answers
Find m∠I. Put the answer below.<br><br><br>m∠I =
Mamont248 [21]

Answer:

45°

...

...

...

..

...

..........

4 0
3 years ago
Guys/girls help what is 30x1= and the times it by fish and eat it and tell me what u get
ziro4ka [17]

Answer:

you cant do that but the answer would be 0

Step-by-step explanation:

because if you eat something it would be gone in our tummy

3 0
3 years ago
The author drilled a hole in a die and filled it with a lead​ weight, then proceeded to roll it 199 times. Here are the observed
Anton [14]

Answer with explanation:

An Unbiased Dice is Rolled 199 times.

Frequency of outcomes 1,2,3,4,5,6 are=28​, 29​, 47​, 40​, 22​, 33.

Probability of an Event

      =\frac{\text{Total favorable Outcome}}{\text{Total Possible Outcome}}\\\\P(1)=\frac{28}{199}\\\\P(2)=\frac{29}{199}\\\\P(3)=\frac{47}{199}\\\\P(4)=\frac{40}{199}\\\\P(5)=\frac{22}{199}\\\\P(6)=\frac{33}{199}\\\\\text{Dice is fair}\\\\P(1,2,3,4,5,6}=\frac{33}{199}

→→→To check whether the result are significant or not , we will calculate standard error(e) and then z value

1.

(e_{1})^2=(P_{1})^2+(P'_{1})^2\\\\(e_{1})^2=[\frac{28}{199}]^2+[\frac{33}{199}]^2\\\\(e_{1})^2=\frac{1873}{39601}\\\\(e_{1})^2=0.0472967\\\\e_{1}=0.217478\\\\z_{1}=\frac{P'_{1}-P_{1}}{e_{1}}\\\\z_{1}=\frac{\frac{33}{199}-\frac{28}{199}}{0.217478}\\\\z_{1}=\frac{5}{43.27}\\\\z_{1}=0.12

→→If the value of z is between 2 and 3 , then the result will be significant at 5% level of Significance.Here value of z is very less, so the result is not significant.

2.

(e_{2})^2=(P_{2})^2+(P'_{2})^2\\\\(e_{2})^2=[\frac{29}{199}]^2+[\frac{33}{199}]^2\\\\(e_{2})^2=\frac{1930}{39601}\\\\(e_{2})^2=0.04873\\\\e_{2}=0.2207\\\\z_{2}=\frac{P'_{2}-P_{2}}{e_{2}}\\\\z_{2}=\frac{\frac{33}{199}-\frac{29}{199}}{0.2207}\\\\z_{2}=\frac{4}{43.9193}\\\\z_{2}=0.0911

Result is not significant.

3.

(e_{3})^2=(P_{3})^2+(P'_{3})^2\\\\(e_{3})^2=[\frac{47}{199}]^2+[\frac{33}{199}]^2\\\\(e_{3})^2=\frac{3298}{39601}\\\\(e_{3})^2=0.08328\\\\e_{3}=0.2885\\\\z_{3}=\frac{P_{3}-P'_{3}}{e_{3}}\\\\z_{3}=\frac{\frac{47}{199}-\frac{33}{199}}{0.2885}\\\\z_{3}=\frac{14}{57.4279}\\\\z_{3}=0.24378

Result is not significant.

4.

(e_{4})^2=(P_{4})^2+(P'_{4})^2\\\\(e_{4})^2=[\frac{40}{199}]^2+[\frac{33}{199}]^2\\\\(e_{4})^2=\frac{3298}{39601}\\\\(e_{4})^2=0.06790\\\\e_{4}=0.2605\\\\z_{4}=\frac{P_{4}-P'_{4}}{e_{4}}\\\\z_{4}=\frac{\frac{40}{199}-\frac{33}{199}}{0.2605}\\\\z_{4}=\frac{7}{51.8555}\\\\z_{4}=0.1349

Result is not significant.

5.

(e_{5})^2=(P_{5})^2+(P'_{5})^2\\\\(e_{5})^2=[\frac{22}{199}]^2+[\frac{33}{199}]^2\\\\(e_{5})^2=\frac{1573}{39601}\\\\(e_{5})^2=0.03972\\\\e_{5}=0.1993\\\\z_{5}=\frac{P'_{5}-P_{5}}{e_{5}}\\\\z_{5}=\frac{\frac{33}{199}-\frac{22}{199}}{0.1993}\\\\z_{5}=\frac{11}{39.6610}\\\\z_{5}=0.2773

Result is not significant.

6.

(e_{6})^2=(P_{6})^2+(P'_{6})^2\\\\(e_{6})^2=[\frac{33}{199}]^2+[\frac{33}{199}]^2\\\\(e_{6})^2=\frac{2178}{39601}\\\\(e_{6})^2=0.05499\\\\e_{6}=0.2345\\\\z_{6}=\frac{P'_{6}-P_{6}}{e_{6}}\\\\z_{6}=\frac{\frac{33}{199}-\frac{33}{199}}{0.2345}\\\\z_{6}=\frac{0}{46.6655}\\\\z_{6}=0

Result is not significant.

⇒If you will calculate the mean of all six z values, you will obtain that, z value is less than 2.So, we can say that ,outcomes are not equally likely at a 0.05 significance level.

⇒⇒Yes , as Probability of most of the numbers that is, 1,2,3,4,5,6 are different, for a loaded die , it should be equal to approximately equal to 33 for each of the numbers from 1 to 6.So, we can say with certainty that loaded die behaves differently than a fair​ die.

   

8 0
3 years ago
Below are the supply and demand equations for blenders in a certain market. In these equations, p represents price, D represents
ZanzabumX [31]
The answer is (B)....
3 0
4 years ago
Other questions:
  • The length of a rectangle is twice the width. The area is 128 yd^2. Find the length and width.
    9·1 answer
  • On Saturday Emma made a basket in 36 out of 80 attempts with a basketball. On Sunday she made a basket in 11 out of 20 attempts.
    13·2 answers
  • Hi, I'm new and totally forgot how to do these. Could anyone help me? I would need step by step. Thanks
    7·1 answer
  • Adult tickets to a play cost $22.00 Tickets for children cost $15.00. Tickets for a group of 11 people cost a total of $228.00.
    8·1 answer
  • Franks credit card has no annual fee, 23.99% interest rate. Switch to new card 16.99% rate. $35 annual fee. How much average bal
    9·1 answer
  • If f(x)= 2x^2 +5radical(x-2)
    12·1 answer
  • The sum of two numbers is 115. Their difference is 21. Find numbers. I need to show my answer
    14·2 answers
  • Please help me!!!!!!! asapppp
    15·1 answer
  • A woman make n basket and sell the all at the same price​
    6·1 answer
  • What is the elapsed between 5:00 pm to 8:15 pm
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!