I'm only going to alter the left hand side. The right side will stay the same the entire time
I'll use the identity tan(x) = sin(x)/cos(x) and cot(x) = cos(x)/sin(x)
I'll also use sin(x+y) = sin(x)cos(y)+cos(x)sin(y) and cos(x+y) = cos(x)cos(y)-sin(x)sin(y)
So with that in mind, this is how the steps would look:
tan(x+pi/2) = -cot x
sin(x+pi/2)/cos(x+pi/2) = -cot x
(sin(x)cos(pi/2)+cos(x)sin(pi/2))/(cos(x)cos(pi/2)-sin(x)sin(pi/2)) = -cot x
(sin(x)*0+cos(x)*1)/(cos(x)*0-sin(x)*1) = -cot x
(0+cos(x))/(-sin(x)-0) = -cot x
(cos(x))/(-sin(x)) = -cot x
-cot x = -cot x
Identity is confirmed
Two lines are perpendicular if and only if the product of their slopes is - 1.
So, you just need to find the slope of each line and find out the product of their slopes.
I will do one example for you.
L1: y = 3x + 5
L2: y = - 3x + 14
L3: y = -x/3 + 14
The slope of a line is the coefficient of the x.
So the slopes are:
L1: slope 3
L2: slope -3
L3: slope -1/3
So now multiply the slopes of each pair of lines:
L1 and L2: 3 * (-3) = - 9 => No, they are not perpendicular
L2 and L3: (-3) * (-1/3) = 1 => No, they are not perpendicular
L1 and L3: (3) * (-1/3) = -1 => Yes, they are penpendicular.
Answer:
Put p(x)=0.
Step-by-step explanation:
2x-1=0 will give x=1/2. This means, If x=1/2 is given to the polynomial p(x), it will give a zero. P(1/2)=0.
1. (x, y) = (7, -12)
2. x = 1, x = 2 are both solutions
Where is the data chart to answer the questions?