jus go on the other side of the graph.
Answer:
about 17 meters
Step-by-step explanation:
We can use the Pythagorean theorem to put an upper bound on the height of the bump in the rail. This assumes half the expanded rail length (d+e) is the hypotenuse of a right triangle whose legs are the bump height (b) and the 2500 meter distance (d) from the center of the rail to its end.
The Pythagorean theorem relates these distances this way:
b^2 + d^2 = (d+e)^2
Expanding the square on the right, we can simplify the expression to find b.
b^2 = (d^2 +2de +e^2) -d^2
b^2 = e(2d +e)
b = √(e(2d +e))
Using lengths in meters, we can fill this in to calculate b.
b = √(.06(2·2500 +.06)) = √300.0036
b ≈ 17.32 . . . . meters
_____
<em>Comment on this solution</em>
We don't expect rails to tear loose from the rail bed and rise up to a height matching that of a 3-story building. That is why there are typically expansion joints and shorter rail lengths used in the construction of railways.
The height is a little lower if we take physics into account and distribute the stress in the rail along its length. No doubt the final curve is somewhat more complicated than the triangle we have assumed.
If it were an ellipse, the height might only be 9.4 meters, with the steepest rise occurring near the ends of the rail. The math for this model is beyond the scope of this answer.
Answer: x = 2 and z=78
Step-by-step explanation:
Opposite angles are non-adjacent angles formed by two intersecting lines. Opposite angles are congruent (equal in measure). Z is Opposite to 78 angle, so z=78.
Adjacent angles add up to 180 degrees, and 78 and (5x + 92) are adyacents so:
5x + 92 + 78 = 180
5x + 170 = 180
5x = 180 - 170
5x = 10
x = 10/5
x = 2