Answer:
mean=134.3
median=65.5
mode=60
Step-by-step explanation:
Mean is computing by adding the all data values and then divided by number of values
mean=sum of all values/number of values
There are 20 data values.
mean=(88+50+66+60+360+55+500+71+41+350+60+50+250+45+45+125+235+65+60+110)/20
mean=2686/20
mean=134.3
For calculating median we arrange the data in ascending order
41 45 45 50 50 55 60 60 60 65 66 71 88 110 125 235 250 350 360 500
n/2=20/2=10 is an integer
So, the median is the average of n/2 and (n/2)+1 value
The median is average of 10th and 11th value
median=(65+66)/2
median=65.5
Mode is the most repeated value and we see that number of times the values are repeated are
45= 2 times
50= 2 times
60= 3 times
Thus, the most repeated value is 60 and it is the mode of data.
Mode=60
Necesitas reconocer los múltiplos u submúltiplos del sistema métrico decimal si son lineales por cada nivel que avanzas multiplicas o divides con el 10
siempre y cuando la unidad de medida es el metro ese queda al centro.
Km Hm Dam m dm cm mm yo los ubico en escalera el metro queda al centro y de cualquier lugar que te posicionas,buscas a donde quieres convertir y revisas si vas a la derecha multiplicas por 10 o si vas a la izquierda divides entre 10 siempre y cuando sea un lugar a donde te vas a mover si son dos lugares es con el 100 por que 10x10 es 100 y si son tres lugares es con el 1000 porque es 10x10x10.
ejemplo 2000m convertirlos a Hm= 20 Hm dividí 2000 entre 100 porque me moví 2 lugares a la izquierda otro ejem. 100 Dam convertirlos a cm=100000 porque 100x 1000 por que avance 3 lugares a la derecha
3c-d
3c-(-c+7)
3c+c-7
4c-7
Final answer: 4c-7
Answer:
6x3x2
Step-by-step explanation:
9514 1404 393
Answer:
b = 71 m
A = 83°
C = 29°
Step-by-step explanation:
Many calculators can solve triangles. Apps are available for phone and tablet, or on the internet, like the one used here. In general, it takes less time to use one of these than to type your question into Brainly.
Given two sides and the angle between them, the Law of Cosines is the appropriate relation to use for finding the third side.
b = √(a² +c² -2ac·cos(B))
b = √(76² +37² -2·76·37·cos(67.75°)) ≈ √5015.48
b ≈ 70.82005 ≈ 71 . . . meters
__
One a side and its opposite angle are known, the remaining angles are found using the Law of Sines.
sin(A)/a = sin(B)/b
A = arcsin(a·sin(B)/b) = arcsin(76·sin(67.75°)/70.82005) ≈ 83.33°
A ≈ 83°
C = arcsin(37·sin(67.75°)/70.82005) ≈ 28.92°
C ≈ 29°
Or, you can find the remaining angle from 180° -68° -83° = 29°.