Answer:
a
b

c

Step-by-step explanation:
From the question we are told that
The population proportion is p = 0.53
The sample size is n = 10
Generally the distribution of the confidence of US adults in newspapers follows a binomial distribution
i.e
and the probability distribution function for binomial distribution is
Here C stands for combination hence we are going to be making use of the combination function in our calculators
Generally the probability that the number of U.S. adults who have very little confidence in newspapers is exactly five is mathematically represented as
=>
=>
Generally the probability that the number of U.S. adults who have very little confidence in newspapers is at least six is mathematically represented as

=> ![P( X \ge 6 )= [^{10}C_6 * [0.53]^6 * (1- 0.53)^{10-6}] + [^{10}C_7 * [0.53]^7 * (1- 0.53)^{10-7}] + [^{10}C_8 * [0.53]^8 * (1- 0.53)^{10-8}] + [^{10}C_9 * [0.53]^9 * (1- 0.53)^{10-9}] + [^{10}C_{10} * [0.53]^{10} * (1- 0.53)^{10-10}]](https://tex.z-dn.net/?f=P%28%20X%20%5Cge%20%206%20%29%3D%20%20%5B%5E%7B10%7DC_6%20%2A%20%20%5B0.53%5D%5E6%20%2A%20%20%281-%200.53%29%5E%7B10-6%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_7%20%2A%20%20%5B0.53%5D%5E7%20%2A%20%20%281-%200.53%29%5E%7B10-7%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_8%20%2A%20%20%5B0.53%5D%5E8%20%2A%20%20%281-%200.53%29%5E%7B10-8%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_9%20%2A%20%20%5B0.53%5D%5E9%20%2A%20%20%281-%200.53%29%5E%7B10-9%7D%5D%20%2B%20%5B%5E%7B10%7DC_%7B10%7D%20%2A%20%20%5B0.53%5D%5E%7B10%7D%20%2A%20%20%281-%200.53%29%5E%7B10-10%7D%5D)
=> ![P( X \ge 6 )= [0.227] + [0.1464] + [0.0619] + [0.0155] + [0.00082]](https://tex.z-dn.net/?f=P%28%20X%20%5Cge%20%206%20%29%3D%20%20%5B0.227%5D%20%2B%20%20%5B0.1464%5D%20%2B%20%20%5B0.0619%5D%20%2B%20%20%5B0.0155%5D%20%2B%20%5B0.00082%5D)
=> 
Generally the probability that the number of U.S. adults who have very little confidence in newspapers is less than four is mathematically represented as

=> ![P( X < 4 )= [^{10}C_3 * 0.53^3 * (1- 0.53)^{10-3}] + [^{10}C_2 * 0.53^2 * (1- 0.53)^{10-2}] + [^{10}C_1 * 0.53^1 * (1- 0.53)^{10-1}] + [^{10}C_0 * 0.53^0 * (1- 0.53)^{10-0}]](https://tex.z-dn.net/?f=P%28%20X%20%3C%20%204%20%29%3D%20%20%5B%5E%7B10%7DC_3%20%2A%20%200.53%5E3%20%2A%20%20%281-%200.53%29%5E%7B10-3%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_2%20%2A%20%200.53%5E2%20%2A%20%20%281-%200.53%29%5E%7B10-2%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_1%20%2A%20%200.53%5E1%20%2A%20%20%281-%200.53%29%5E%7B10-1%7D%5D%20%2B%20%20%5B%5E%7B10%7DC_0%20%2A%20%200.53%5E0%20%2A%20%20%281-%200.53%29%5E%7B10-0%7D%5D%20)
=> 
=> 
Step-by-step explanation:
In figure:
∠PRT+∠RTP+∠TPR=180
O
(angle sum property of triangle)
⇒x+(180
O
−∠RTQ)+60
O
=180
O
(linear pair)
⇒x+(180
O
−97
0
)+60
o
=180
O
⇒x=31
o
Now, ∠PRT+∠TRQ+∠QRS=180
O
(angle of straight line)
⇒x+48
o
+y=180
O
⇒31
o
+48
o
+y=180
O
⇒y=101
0
Answer:
- h = -16t^2 + 73t + 5
- h = -16t^2 + 5
- h = -4.9t^2 + 73t + 1.5
- h = -4.9t^2 + 1.5
Step-by-step explanation:
The general equation we use for ballistic motion is ...

where g is the acceleration due to gravity, v₀ is the initial upward velocity, and h₀ is the initial height.
The values of g commonly used are -32 ft/s², or -4.9 m/s². Units are consistent when the former is used with velocity in ft/s and height in feet. The latter is used when velocity is in m/s, and height is in meters.
_____
Dwayne throws a ball with an initial velocity of 73 feet/second. Dwayne holds the ball 5 feet off the ground before throwing it. (h = -16t^2 + 73t + 5)
A watermelon falls from a height of 5 feet to splatter on the ground below. (h = -16t^2 + 5)
Marcella shoots a foam dart at a target. She holds the dart gun 1.5 meters off the ground before firing. The dart leaves the gun traveling 73 meters/second. (h = -4.9t^2 + 73t + 1.5)
Greg drops a life raft off the side of a boat 1.5 meters above the water. (h = -4.9t^2 + 1.5)
_____
<em>Additional comment on these scenarios</em>
The dart and ball are described as being launched at 73 units per second. Generally, we expect launches of these kinds of objects to have a significant horizontal component. However, these equations are only for <em>vertical</em> motion, so we must assume the launches are <em>straight up</em> (or that the up-directed component of motion is 73 units/second).