Answer:

Step-by-step explanation:
We are factoring

So:
((2•5^2x^2) + 485x) - 150
Pull like factors :
50x^2 + 485x - 150 = 5 • (10x^2 + 97x - 30)
Factor
10x^2 + 97x - 30
Step-1: Multiply the coefficient of the first term by the constant 10 • -30 = -300
Step-2: Find two factors of -300 whose sum equals the coefficient of the middle term, which is 97.
-300 + 1 = -299
-150 + 2 = -148
-100 + 3 = -97
-75 + 4 = -71
-60 + 5 = -55
-50 + 6 = -44
-30 + 10 = -20
-25 + 12 = -13
-20 + 15 = -5
-15 + 20 = 5
-12 + 25 = 13
-10 + 30 = 20
-6 + 50 = 44
-5 + 60 = 55
-4 + 75 = 71
-3 + 100 = 97
Step-3: Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -3 and 100
10x^2 - 3x + 100x - 30
Step-4: Add up the first 2 terms, pulling out like factors:
x • (10x-3)
Add up the last 2 terms, pulling out common factors:
10 • (10x-3)
Step-5: Add up the four terms of step 4:
(x+10) • (10x-3)
Which is the desired factorization
Thus your answer is

Answer:

Step-by-step explanation:
Let E be the set of all even positive integers in the universe Z of integers,
i.e
E = {2,4,6,8,10 ....∞}
be the characteristic function of E.
∴

For XE(2)
since x is an element of E (i.e the set of all even numbers)
For XE(-2)
since - 2 is less than 0 , and -2 is not an element of E
For { x ∈ Z: XE(x) = 1}
This can be read as:
x which is and element of Z such that X is also an element of x which is equal to 1.
∴

E = {2,4,6,8,10 ....∞}
An arithmetic sequence (a_n) is as follows:

where

is the first term and d is the constant difference,
thus, we see that the n'th term of an arithmetic sequence is

in our particular case d=5, the third term is 8, so we have:

and the general term is

,
Answer: first term is -2, n'th term is -2+5(n-1)
1/2 of angle D is given as 32 degrees.
The 3 inside angles need to add up to 180 degrees.
Angle B is a right angle, which is 90.
Angle C = 180 - 90 - 32 = 58 degrees.