Answer:
y = x² − 6x − 27
Step-by-step explanation:
To distribute, you can use something called FOIL. It stands for First, Outer, Inner, Last.
First, multiply the First term in each factor.
x · x = x²
Now multiply the Outer terms in each factor.
x · 3 = 3x
Next multiply the Inner terms in each factor.
-9 · x = -9x
Finally, multiply the Last terms in each factor.
-9 · 3 = -27
Add them all up:
x² + 3x − 9x − 27
x² − 6x − 27
<span>
y = 7 + 3/5
y = 35/5 + 3/5
y = 38/5
y = 2*(38/5)
y = 76/10
---
lunch time:
z = 1/2
z = 5*(1/2)
z = 5/10
---
time switching classes:
w = 7/10
---
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (76/10 - 5/10 - 7/10)/6
x = (76 - 5 - 7)/(10*6)
x = (64)/(10*6)
x = (2*2*2*2*2*2)/(2*5*2*3)
x = (2*2*2*2)/(5*3)
x = 16/15
x = 1.0666666666
---
check:
y = 7 + 3/5
y = 7.6
z = 1/2
z = 0.5
w = 7/10
w = 0.7
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (7.6 - 0.5 - 0.7)/6
x = 1.0666666666
answer:
1.07 hours</span>
The intervals are given as follows:
- In range notation: [-282, 20,320].
- In set-builder notation: {x|x ∈ ℝ, -282 <= x <= 20,320}
<h3>What is the range of elements notation for interval?</h3>
The range of elements notation for interval is given by:
[a,b].
In which:
In this problem these values are given by:
a = -282, b = 20,320.
Hence the interval in range notation is given by:
[-282, 20,320].
<h3>How to write the interval in set-builder notation?</h3>
The same interval can be written as follows, using set-builder notation?
{x|x ∈ ℝ, a <= x <= b}
Hence, for the situation described in this problem, the set-builder notation for the values is:
{x|x ∈ ℝ, -282 <= x <= 20,320}
More can be learned about notation of intervals at brainly.com/question/27896097
#SPJ1