Answer:
Probability that average height would be shorter than 63 inches = 0.30854 .
Step-by-step explanation:
We are given that the average height of 20-year-old American women is normally distributed with a mean of 64 inches and standard deviation of 4 inches.
Also, a random sample of 4 women from this population is taken and their average height is computed.
Let X bar = Average height
The z score probability distribution for average height is given by;
Z =
~ N(0,1)
where,
= population mean = 64 inches
= standard deviation = 4 inches
n = sample of women = 4
So, Probability that average height would be shorter than 63 inches is given by = P(X bar < 63 inches)
P(X bar < 63) = P(
<
) = P(Z < -0.5) = 1 - P(Z <= 0.5)
= 1 - 0.69146 = 0.30854
Hence, it is 30.85% likely that average height would be shorter than 63 inches.
Answer:
749
Step-by-step explanation:
8349
Parent Function: f(x)=x^2
Horizontal Shift: Right 5 Units
Vertical Shift: Up 3 Units
Reflection about the x-axis: None
Reflection about the y-axis: None
Vertical Compression or Stretch: None
A plane cuts horizontally across a rectangular pyramid will always be a rectangle. (Answer B)
Answer:
17
Step-by-step explanation:
12 -6 divided by 3 is 2, so 15+2 is 17