1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
3 years ago
10

The length of a school bus is 12.6 meters. If 9 school buses park end to end with 2 meters between each one, what's the total le

ngth from the front of the first bus to the end of the last bus?
Mathematics
1 answer:
weqwewe [10]3 years ago
7 0

Answer:

129.4

Step-by-step explanation:

Calculation for what's the total length from the front of the first bus to the end of the last

First step is to multiply the given number of buses by the length of each one

Hence,

12.6 meters x 9 = 113.4 meters

Second step

Since there are 8 spaces in between we would multiply the 8 spaces by 2 meters

8 x 2 meters = 16

Now let calculate total length from the front of the first bus to the end of the last

16 + 113.4 meters =129.4

Therefore total length from the front of the first bus to the end of the last will be 129.4

You might be interested in
For the following pair of functions, find (f+g)(x) and (f-g)(x).
ch4aika [34]

Given:

The functions are

f(x)=4x^2+7x-5

g(x)=-9x^2+4x-13

To find:

The functions (f+g)(x) and (f-g)(x).

Solution:

We know that,

(f+g)(x)=f(x)+g(x)

(f+g)(x)=4x^2+7x-5-9x^2+4x-13

(f+g)(x)=(4x^2-9x^2)+(7x+4x)+(-5-13)

(f+g)(x)=-5x^2+11x-18

And,

(f-g)(x)=f(x)-g(x)

(f-g)(x)=(4x^2+7x-5)-(-9x^2+4x-13)

(f+g)(x)=4x^2+7x-5+9x^2-4x+13

(f+g)(x)=(4x^2+9x^2)+(7x-4x)+(-5+13)

(f-g)(x)=13x^2+3x+8

Therefore, the required functions are (f+g)(x)=-5x^2+11x-18

and (f-g)(x)=13x^2+3x+8.

7 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
200,000 is 10 times what number ?
madreJ [45]

Answer:

20,000

Step-by-step explanation:

you just take one zero off

4 0
3 years ago
Read 2 more answers
42 more than half a number is the same as four times the number. What is the number?
Dmitry_Shevchenko [17]



1/2x + 42 = 4x
-1/2x           -1/2x
------------------------
42 = 3.5x
/3.5   /3.5
------------------------
12 = x
the number is 12


explanation: 42 more than 1/2 of a number can be written as 1/2x + 42
four times a number can be written as 4x.
42 more than 1/2 of a number is equal to 4 times a number. So 1/2x + 42 = 4x.

Hope this helps :)
8 0
3 years ago
A researcher determines the probability that a research study will reveal something new is p = 0.80. What is the probability tha
SVETLANKA909090 [29]

Answer:

the probibilty is 1

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • A kilometer is 3,280.8 feet. how many feet long is a meter?
    5·1 answer
  • Uptown Photography charges $15 per portrait sheet, plus $19 for a session fee. Downtown Photography charges $29 for a session fe
    5·1 answer
  • Luc randomly selected 40 students and asked them whether they had ever gone snowboarding. He repeated this survey using the same
    10·1 answer
  • The Chambers family has a net monthly income of $6,500.
    8·2 answers
  • Let A=(-6,7), B=(-4,11), and C=(-2.10) be three points in the coordinate plane (A) Verify that the three points form a right tri
    14·1 answer
  • A car uses 8 gallons of gasoline to travel 290 miles. How much gasoline will the car use to travel 400 miles
    9·1 answer
  • 1 1/2 + 2/5=<br> please help i will give you 72 points
    13·2 answers
  • 4. Find the circumference of the circ All changes saved
    6·1 answer
  • Sorry its simple but im stressing​
    9·2 answers
  • F (x) = √x + 9 what is the domain?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!