Answer:
x = 23/5 and y = 7/20
Step-by-step explanation:
2x + 8y = 12 and 3x - 8y = 11 are two given equations
Now,
<u>Step </u><u>1</u><u>:</u>
2x + 8y = 12 ...(1)
3x - 8y = 11 ...(2)
<u>Step </u><u>2</u><u>:</u>
From equation (2) we get the value of x
i.e.,
3x - 8y = 11
3x = 8y + 11
<em><u>x = 8y + 11/3</u></em>
<u>Step </u><u>3</u><u>:</u>
Now,
Put the value of <u>x = 8y + 11/3</u><u> </u>in equation (1) we get,
i.e.,
2x + 8y = 12
2(8y + 11/3) + 8y = 12
16y + 22/3 + 8y = 12
16y + 22 + 8y(3)/3 = 12
16y + 22 + 24y/3 = 12
16y + 24y + 22 = 12 * 3
40y = 36 - 22
40y = 14
y = 14/40
<em><u>y = 7/20</u></em>
<u>Step </u><u>4</u><u>:</u>
Now,
Substitute the value of <u>y = 7/20</u><u> </u>in equation (2) we get,
i.e.,
3x - 8y = 11
3x - 8(7/20) = 11
3x - 56/20 = 11
3x - 14/5 = 11
3x = 11 + 14/5
3x = 11 * 5 + 14/5
3x = 55 + 14/5
3x = 69/5
x = 69/3 * 5
<em><u>x = 23/5</u></em>
Answer:
3(4)+2= 14
Step-by-step explanation:
Answer:
$388.50
Step-by-step explanation:
9.25 * 42 = $388.50
Answer:
1/3(n+1)³
Step-by-step explanation:
1x2+2x3+3x4+4x5+...= 1²+1+2²+2+3²+3+...+n²+n+1=
=(1²+2²+3²+...+n²)+(1+2+3+...+n+1)=
=1/6n(n+1)(2n+1)+1/2(n+1)(1+n+1)=
=1/6(n+1)(n(2n+1)+3(n+2))=
=1/6(n+1)(2n²+4n+2)=
=1/6(n+1)*2(n+1)²=
=1/3(n+1)³
5(2x + 3y) - 4(3x - 5y)
5(2x) + 5(3y) - 4(3x) + 4(5y)
(10x + 15y) + (-12x + 20y)
(10x - 12x) + (15y + 20y)
-2x + 35y