9514 1404 393
Answer:
see attached
Step-by-step explanation:
One way to approximate the derivative at a point is by finding the slope of the secant line between points on either side. That is what is done in the attached spreadsheet.
f'(0.1) ≈ (f(0.2) -f(0.0))/(0.2 -0.0) = -5 . . . for example
__
Another way to approximate the derivative is to write a polynomial function that goes through the points (all, or some subset around the point of interest), and use the derivative of that polynomial function.
These points are reasonably approximated by a cubic polynomial. The derivative of that polynomial at the points of interest is given in the table in the second attachment. (f1 is a rounding of the derivative function f')
Answer:
1/4
Step-by-step explanation:
12/4= 3
Each paid $3 but as a fraction 3/12=1/4
Answer:
The proportion is 2/7 = 12/42
x = 12
The answer is 12
Well the exact form is 1/3138428376721
and in decimal form it's 3.18630817 • 10 ^-13
Im sorry i have no idea lol