1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reptile [31]
3 years ago
12

Write the equation of the line fully simplified slope-intercept form.

Mathematics
2 answers:
VMariaS [17]3 years ago
8 0

Answer:

y = -x/6 + 2

Step-by-step explanation:

iogann1982 [59]3 years ago
4 0

Answer:

y=2-1/6x

Step-by-step explanation:

You might be interested in
A rectangular street sign has an area of 40 square inches and a perimeter of 28 inches. What are the dimensions of the sign?
Usimov [2.4K]

Answer: 4 inches by 10 inches

Step-by-step explanation:

The area of a rectangle can be written as b*h, while perimeter is equal to (2b +2h).

A = b*h = 40

P = 2b + 2h = 28

P = 2b + 2h

28 = 2b + 2h

28 = 2(b+h)

14 = b + h

What two numbers add to 14 and multiply to 40?

4 * 10 = 40

4 + 10 = 14

8 0
3 years ago
Read 2 more answers
Find the area of the trapezoid
olasank [31]
Add every side together then divide it by 100
4 0
3 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
I NEED HELP ASAP
antoniya [11.8K]

a) The equation V(m) = 8400 - 560\cdot m represents the discharge of the Grand Prismatic Spring.

b) The discharge of the Grand Prismatic Spring takes 15 minutes.

c) The remaining quantity after 7 minutes is 4480 gallons.

d) The hardness of cardboard is 2.

<h3>How to apply concepts of linear functions</h3>

a) In this case, the volume of water (V), in gallons, decreases <em>linearly</em> in time (m), in minutes. Then, we could model the situation by using the following expression:

V(m) = V_{o} - \dot V \cdot m (1)

Where:

  • V_{o} - Initial volume, in gallons.
  • \dot V - Discharge rate, in gallons per minute.

If we know that V_{o} = 8400\,gal and \dot V = 560\,\frac{gal}{min}, then the volume of the Grand Prismatic Spring is represented by this expression:

V(m) = 8400 - 560\cdot m (2)

The equation V(m) = 8400 - 560\cdot m represents the discharge of the Grand Prismatic Spring. \blacksquare

b) By (1) and V(m) = 0 we find the time required for discharge:

m = \frac{0 - 8400}{-560}

m = 15\,min

The discharge of the Grand Prismatic Spring takes 15 minutes. \blacksquare

c) The quantity of gallons remaining is found by evaluating the function for m = 7:

V(7) = 8400 - 560\cdot (7)

V(7) = 4480\,gal

The remaining quantity after 7 minutes is 4480 gallons. \blacksquare

d) According to Mohs scale, the hardness of feldspar is 6. The statement indicates the following relationship, as there is a constant relationship between both hardnesses:

y = 3\cdot x (3)

Where:

  • x - Hardness of cardboard.
  • y - Hardness of feldspar.

If we know that y = 6, then the hardness of cardboard is:

x = \frac{6}{3}

x = 2

The hardness of cardboard is 2. \blacksquare

To learn more on linear functions, we kindly invite to check this verified question: brainly.com/question/17058347

8 0
3 years ago
Samuel has run for 45 minutes. If he has completed 60% of his run, how many minutes will Samuel run in all?
Irina18 [472]

Answer:

27

Step-by-step explanation:

45÷10= 4.5

4.5×6= 27 minutes

6 0
3 years ago
Other questions:
  • Is 169 a whole number,Interger,Rational, Irrational,or Real?
    11·1 answer
  • Nick bought apples at a farmers market where 5 apples cost $4.45.
    8·1 answer
  • 20 people are going by van to a movie.Each van seats 8 people . How many vans are needed to take everyone ?
    6·1 answer
  • The diagram shows parallel lines p,q and r cut by transversal t. Draw a line from each angle pair to correct direction
    7·2 answers
  • Fddddddddddddddddddd
    11·2 answers
  • Jemma has 24 balls. Out of the 24 balls,
    7·1 answer
  • Helppp pleaseeee I really need help
    6·2 answers
  • Write 20 words with meaning​
    9·1 answer
  • Anyone else gonna sit alone at lunch today in school? :')
    6·2 answers
  • What is the ratio of 12 minutes to hour?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!