Answer:
(a) Theorem 9
Step-by-step explanation:
Any of the given theorems can be used to prove lines are parallel. We need to find the one that is applicable to the given geometry.
<h3>Analysis</h3>
The marked angles are between the parallel lines (interior) and on opposite sides of the transversal (alternate).
Theorem 9 applies to congruent alternate interior angles.
<span> First, reduce the fraction to lowest terms, e.g. 8/6 = 4/3.
Look at the denominator. Split it into its prime factors. If its prime
factors only consist of 2's and 5's, then it will be terminating.
Examples:
16 = 2 x 2 x 2 x 2, so terminating
25 = 5 x 5, so terminating
2000 = 2 x 1000 = 2 x (2 x 5) x (2 x 5) x (2 x 5), so terminating
12 = 2 x 3, so repeating (has prime factor 3, which is not 2 or 5)
13 = 13, so repeating (has prime factor 13, which is not 2 or 5) Hope this helps!!
</span>
Answer:
<h2>
The right option is twelve-fifths</h2>
Step-by-step explanation:
Given a right angle triangle ABC as shown in the diagram. If ∠BCA = 90°, the hypotenuse AB = 26, AC = 10 and BC = 24.
Using the SOH, CAH, TOA trigonometry identity, SInce we are to find tanA, we will use TOA. According to TOA;
Tan (A) = opp/adj
Taken BC as opposite side since it is facing angle A directly and AC as the adjacent;
tan(A) = BC/AC
tan(A) = 24/10
tan(A) = 12/5
The right option is therefore twelve-fifths