1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
3 years ago
9

Find the limit of the formula given​

Mathematics
1 answer:
avanturin [10]3 years ago
6 0

Answer:

\displaystyle  \lim_{x \to 0^+} x^\big{\sqrt{x}} = 1

General Formulas and Concepts:

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e
  • Logarithmic Property [Exponential]:                                                             \displaystyle log(a^b) = b \cdot log(a)

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)
  • Left-Side Limit:                                                                                               \displaystyle  \lim_{x \to c^-} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

L’Hopital’s Rule:                                                                                                     \displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Step-by-step explanation:

We are given the following limit:

\displaystyle  \lim_{x \to 0^+} x^\big{\sqrt{x}}

Substituting in <em>x</em> = 0 using the limit rule, we have an indeterminate form:

\displaystyle  \lim_{x \to 0^+} x^\big{\sqrt{x}} = 0^0

We need to rewrite this indeterminate form to another form to use L'Hopital's Rule. Let's set our limit as a function:

\displaystyle y = \lim_{x \to 0^+} x^\big{\sqrt{x}}

Take the ln of both sides:

\displaystyle lny = ln \Big( \lim_{x \to 0^+} x^\big{\sqrt{x}} \Big)

Rewrite the limit by including the ln in the inside:

\displaystyle lny = \lim_{x \to 0^+} ln \big( x^\big{\sqrt{x}} \big)

Rewrite the limit once more using logarithmic properties:

\displaystyle lny = \lim_{x \to 0^+} \sqrt{x}ln(x)

Rewrite the limit again:

\displaystyle lny = \lim_{x \to 0^+} \frac{ln(x)}{\frac{1}{\sqrt{x}}}

Substitute in <em>x</em> = 0 again using the limit rule, we have an indeterminate form in which we can use L'Hopital's Rule:

\displaystyle \lim_{x \to 0^+} \frac{ln(x)}{\frac{1}{\sqrt{x}}} = \frac{\infty}{\infty}

Apply L'Hopital's Rule:

\displaystyle \lim_{x \to 0^+} \frac{ln(x)}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{2x^\big{\frac{3}{2}}}}

Simplify:

\displaystyle \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{2x^\big{\frac{3}{2}}}} = \lim_{x \to 0^+} -2\sqrt{x}

Redefine the limit:

\displaystyle lny = \lim_{x \to 0^+} -2\sqrt{x}

Substitute in <em>x</em> = 0 once more using the limit rule:

\displaystyle \lim_{x \to 0^+} -2\sqrt{x} = -2\sqrt{0}

Evaluating it, we have:

\displaystyle \lim_{x \to 0^+} -2\sqrt{x} = 0

Substitute in the limit value:

\displaystyle lny = 0

e both sides:

\displaystyle e^\big{lny} = e^\big{0}

Simplify:

\displaystyle y = 1

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Limits

You might be interested in
HELP ASSAP WILL MARK BRAINIEST!!!!
lesantik [10]

Answer:

The cost of each pound of jelly beans: $2.75

The cost of each pound of almonds: $3.75

Step-by-step explanation:

A = The cost of each pound of almonds

J = The cost of each pound of jelly beans

9A + 7J = 53

3A + 5J = 25

Multiply 3A + 5J = 25 by (-3)

-9A  -15J = -75

Now 2 new equations:

9A + 7J = 53

-9A  -15J = -75

------------------------------Add

-8J = - 22

J = 2.75

3A + 5(2.75)= 25

3A + 13.75 = 25

3A = 11.25

A = 3.75

6 0
3 years ago
What is the slope of y+3=−4(x+7)
dem82 [27]

Answer:

the slope will be m=-4

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Which value of x would make the rate of change between the two points -5? (12,7) and (x,17)
wolverine [178]

Step-by-step explanation:

\sqrt{(12 - x) {}^{2} +  {(7 - 17) {}^{2} } }   =  - 5\\  \\  \sqrt{144 + x {}^{2}  - 24x + ( - 10) {}^{2}   }  =  - 5 \\   \\ \sqrt{144 + x {}^{2}  - 24x  + 100}  =  - 5 \\  \\ 244 + x {}^{2}  - 24x = 25 \\  \\  {?}^{2}

you \: can \: now  \\ \: continue \: evaluating  \: it

4 0
2 years ago
Which point is located on the line represented by the equation y+4=-5(x-3)
Genrish500 [490]
The equation of a line that passes through (x1,y1) and has a slope of m is 
y-y1=m(x-x1)
given
y-(-4)=-5(x-3)
the point is (3,-4)
3 0
3 years ago
Carmen paid $17.64 for a 7.94-ky bag of dog food. A few weekel later, she paid $18.88 for an 8,39 ky bag at a different store,
shepuryov [24]
Not sure gffhjjhsbhjjkk
5 0
3 years ago
Other questions:
  • I really need help so please help me I'm completely lost
    10·2 answers
  • The National Football League (NFL) polls fans to develop a rating for each football game (NFL website, October 24, 2012). Each g
    15·1 answer
  • Three shirts cost $9.99. How much does it cost for 8 shirts?
    8·2 answers
  • The equation ​ yˆ=−0.37x2+6.15x+52.3 ​ approximates the average temperature in October in degrees Fahrenheit at an agricultural
    10·2 answers
  • Could 4.1\text{ cm}, 8.4\text{ cm},4.1 cm,8.4 cm, and 1.3\text{ cm}1.3 cm be the side lengths of a triangle?
    11·2 answers
  • Find the volume of a cube when it's side measures 2 cm.
    8·1 answer
  • Please Help!<br> Just say 1,2,3,4 , or 5 to label them! Ty!
    9·2 answers
  • Divide. Write the answer as a decimal.<br> 4.705 ÷ 25 =
    15·1 answer
  • Equivalent to 7^3 × 7^-2
    9·2 answers
  • If n(A u B)=23, n(A n B)=9,and n(B)=12. find n(A)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!