1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
3 years ago
12

17. The perimeter of rectangle RPQT is 134dm.

Mathematics
1 answer:
Rina8888 [55]3 years ago
6 0

Answer:

\sf 1092 \: dm^2

Refer to the attachment for explication of steps. :)

You might be interested in
PLS HELP WILL GIVE BRAINIEST.
motikmotik

Answer:

y=1/3x

Step-by-step explanation:

the first line is 1 and the second line is 3

5 0
2 years ago
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
3 years ago
How many blocks are needed for the 5th example?​
JulsSmile [24]

Answer:

5th example: 28 blocks.

24th example: 123 blocks.

Step-by-step explanation:

Hope this helped!

7 0
3 years ago
Halloween Candy Halloween is Kelly's favorite holiday of the year! Based on experience, Kelly knows that on average, each house
LuckyWell [14K]

Using the <u>normal distribution and the central limit theorem</u>, it is found that there is an approximately 0% probability that the total number of candies Kelly will receive this year is smaller than last year.

Normal Probability Distribution

In a normal distribution with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

  • It measures how many standard deviations the measure is from the mean.  
  • After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
  • By the Central Limit Theorem, for n instances of a normal variable, the mean is n\mu while the standard deviation is s = \sigma\sqrt{n}.

In this problem:

  • Mean of 4 candies, hence \mu = 4.
  • Standard deviation of 1.5 candies, hence \sigma = 1.5.
  • She visited 35 houses, hence n = 35, \mu = 35(4) = 140, s = 1.5\sqrt{4} = 3

The probability is the <u>p-value of Z when X = 122</u>, hence:

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{122 - 140}{3}

Z = -6

Z = -6 has a p-value of 0.

Approximately 0% probability that the total number of candies Kelly will receive this year is smaller than last year.

A similar problem is given at brainly.com/question/24663213

6 0
3 years ago
Can anyone help me with this.<br>Thank You.
Cerrena [4.2K]
I can not see the question it is blurry
4 0
3 years ago
Other questions:
  • What is the name for a transformation where the figure changes size?
    10·2 answers
  • Explanation for 3x+5=20
    6·2 answers
  • What is the slope of the line through ( -2.1) and (2, -5)
    9·1 answer
  • What are the solutions of 16p^2 - 64 = 0
    10·2 answers
  • Can anyone Help plz!!
    10·1 answer
  • What is the slope of the following graph?
    11·1 answer
  • POSSIBLE POINTS: 5
    14·1 answer
  • Change in v =9.8m/s 2 times t
    10·1 answer
  • Is this graph continuous or discontinuous?
    5·1 answer
  • Rewrite the following equation in slope-intercept form.<br><br> y − 3 = 12( x + 4)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!