1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
3 years ago
13

Some body is there in room.​

Mathematics
1 answer:
liraira [26]3 years ago
6 0
What are you taking about.???
You might be interested in
Help with #7 please I don’t understand
quester [9]

Answer:

A

Step-by-step explanation:

(2x^2 + 3x - 4) (x + 4)


FOIL.


2x^2 times x = 2x^3

3x times x is 3x^2

-4 times x = -4x

2x^2 times 4 = 8x^2

3x times 4 = 12 x

-4 times 4 = -16


Combine like terms to get 2x^3 + 11x^2 + 8x - 16.

4 0
3 years ago
Read 2 more answers
Plsss hellpppp 14 and 15 plsssssss
Lesechka [4]

Answer:

14). 2nd quadrant

15). 1st quadrant

Step-by-step explanation:

14).Coordinates of a point → J(-8, -12)

    Coordinates of the new point J' after reflection of x-axis will follow the rule,

    (x, y) → (x, -y)

    Coordinates of J' → (-8, 12)

    Therefore, point J' will lie in 2nd quadrant.

15). Coordinates of a point → W(-6, 7)

    Rule for the rotation by 90°clockwise about the origin,

    (x, y) → (y, -x)

    Coordinates of point W → (-6, 7)

    Following this rule,

    W(-6, 7) → W'(7, 6)

    Therefore, point W' will lie in the first quadrant.

7 0
3 years ago
Help is needed please hurry
denpristay [2]

Step-by-step explanation:

step 1. Where is the original equation? let's assume it is y = x^2

step 2. to shift to the right 3 places replace x with x - 3 and to shift 4 down subtract 4 from the equation

step 3. y = (x - 3)^2 - 4.

4 0
3 years ago
40 fl oz = how many cups and fl oz left over
Nata [24]
You get 5 cups exactly
8 0
3 years ago
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
Other questions:
  • Can someone answer this question please?
    6·1 answer
  • What is 2.40 times 2.08
    14·2 answers
  • Simplify (square root of 2)(cube root of 2)
    12·1 answer
  • Can someone help me with this problem that is in the picture
    10·2 answers
  • Garrett had 120 comics in his comic book collection. 45 of them are Spiderman comics, 50 of them are Batman comics and the rest
    7·1 answer
  • BRAINLIEST IF CORRECT, NO LINKS OR SPAM ALLOWED
    8·1 answer
  • there are 3 method to show that 40 is the sum of two prime. among all the prime , find the difference between the two largest pr
    10·2 answers
  • Can someone please help me on this question
    7·1 answer
  • What is the missing length
    5·1 answer
  • Find the magnitude and direction of each resultant for the given vectors. Round each side to the nearest tenth and round each an
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!