Answer:
"C" =14
Step-by-step explanation:
14+(-12)=-12+c
-12+c=14+(-12)
-12+c=14-12
-12+c+12=2+12
c=14
Given that f(x) = x/(x - 3) and g(x) = 1/x and the application of <em>function</em> operators, f ° g (x) = 1/(1 - 3 · x) and the domain of the <em>resulting</em> function is any <em>real</em> number except x = 1/3.
<h3>How to analyze a composed function</h3>
Let be f and g functions. Composition is a <em>binary function</em> operation where the <em>variable</em> of the <em>former</em> function (f) is substituted by the <em>latter</em> function (g). If we know that f(x) = x/(x - 3) and g(x) = 1/x, then the <em>composed</em> function is:



The domain of the function is the set of x-values such that f ° g (x) exists. In the case of <em>rational</em> functions of the form p(x)/q(x), the domain is the set of x-values such that q(x) ≠ 0. Thus, the domain of f ° g (x) is
.
To learn more on composed functions: brainly.com/question/12158468
#SPJ1
The formula to find the area of a circle is pi x radius^2.
pi = 3.14 (in this case)
radius = 6
6^2 (6 x 6) = 36
36 x 3.14 (radius^2 x pi) = 113.04
So, the area of a circle with radius 6 cm is 113.04 cm.
Answer: verdadero.
Step-by-step explanation:
En geometría se dice que dos figuras son semejantes si tienen la misma forma pero no necesariamente el mismo tamaño.
Ahora, lo que define la forma de un triángulo son sus ángulos, entonces si dos triángulos tienen los mismos ángulos, estos triángulos van a tener la misma forma.
Y los lados siendo proporcionales entre ellos (recordar que una relación proporcional es y = k*x) habla de la relación entre los tamaños de los dos triángulos.
Entonces si, "dos triángulos son semejantes, si sus ángulos son iguales y sus lados proporcionales" es verdadero.
Answer:
HERE IS YOUR ANSWER
Step-by-step explanation:
Use the mirror equation:
1/di + 1/do = 1/f
where di = -10 cm and f = +15 cm. (Note that di is negative if the image is virtual.)
Substitute and solve for do.
1/do + 1/(-10 cm) = 1/(15 cm)
1/do = 1/(15 cm) - 1/(-10 cm) = 5/(30 cm)
do = 6 cm
Hope it helps you
Regards,
Rachana