(1) ∠ABC = 65°, ∠DBE = 65°, ∠CBE = 115°, ∠ABD = 115°
(2) ∠ABC = 62°, ∠DBE = 62°, ∠CBE = 118°, ∠ABD = 118°
Solution:
(1) In the given image ABC and DBE are vertical angles.
<u>Vertical angle theorem:</u>
If two angles are vertical then they are congruent.
⇒ ∠ABC = ∠DBE
⇒ 3x° + 38° = 5x° + 20°
Arrange like terms one side.
⇒ 38° – 20° = 5x° – 3x°
⇒ 18° = 2x°
⇒ x° = 9°
∠ABC = 3(9°) + 38° = 65°
∠DBE = 5(9°) + 20° = 65°
Adjacent angles in a straight line = 180°
⇒ ∠ABC + ∠CBE = 180°
⇒ 65° + ∠CBE = 180°
⇒ ∠CBE = 115°
∠ABD and ∠CBE are vertical angles.
∠ABD = 115°
(2) In the given image ABC and DBE are vertical angles.
⇒ ∠ABC = ∠DBE
⇒ 4x° + 2° = 5x° – 13°
Arrange like terms one side.
⇒ 13° + 2° = 5x° – 4x°
⇒ 15° = x°
∠ABC = (4(15°) + 2°) = 62°
∠DBE = 5(15°) – 13° = 62°
Adjacent angles in a straight line = 180°
⇒ ∠ABC + ∠CBE = 180°
⇒ 62° + ∠CBE = 180°
⇒ ∠CBE = 118°
∠ABD and ∠CBE are vertical angles.
∠ABD = 118°
Answer:
25%
because 4 goes into 16 4 times so kinda like a dollar if 16 was your dollar and you only got 4 it would be 25%
16 = $1
4 = 25 cents
Answer:
see below
Step-by-step explanation: 7 1 16 33
y = x² translated t the point (3, 2) y = 0 when x = 0
y = (x - 3)² moves the function three units to the right y = 0 when x = -3
y = (x-3)² + 2 moves the function up 2 units y = 2 when x = -3
y = (x-3)² + 2
y = x² - 6x + 9 + 2
y = x² - 6x +11
graph the equations x², (x-3)² + 2, and x² - 6x + 11 to verify (I did)
Answer:
You gotta deserve it
Step-by-step explanation: