Pie equals 3.14 so if you turn that into a fraction you will get your answer
Sin2x=2sinxcosx, cos2x=1-2sin^2x
sin(2x)+cos(3x)=2sinxcosx+cos(x+2x)
cos(x+2x)=cosx(1-2sin^2(x))-sinx2sinxcosx
sin(2x)+cos(3x)=2sinxcosx(1-sinx)+cosx(1-2sin^2(x))
Answer:
what are the answers?
Step-by-step explanation:
Treat the matrices on the right side of each equation like you would a constant.
Let 2<em>X</em> + <em>Y</em> = <em>A</em> and 3<em>X</em> - 4<em>Y</em> = <em>B</em>.
Then you can eliminate <em>Y</em> by taking the sum
4<em>A</em> + <em>B</em> = 4 (2<em>X</em> + <em>Y</em>) + (3<em>X</em> - 4<em>Y</em>) = 11<em>X</em>
==> <em>X</em> = (4<em>A</em> + <em>B</em>)/11
Similarly, you can eliminate <em>X</em> by using
-3<em>A</em> + 2<em>B</em> = -3 (2<em>X</em> + <em>Y</em>) + 2 (3<em>X</em> - 4<em>Y</em>) = -11<em>Y</em>
==> <em>Y</em> = (3<em>A</em> - 2<em>B</em>)/11
It follows that

Similarly, you would find

You can solve the second system in the same fashion. You would end up with

Answer: 40
Step-by-step explanation: