Answer:
0.010
Step-by-step explanation:
We solve the above question using z score formula
z = (x-μ)/σ, where
x is the raw score = 63 inches
μ is the population mean = 70 inches
σ is the population standard deviation = 3 inches
For x shorter than 63 inches = x < 63
Z score = x - μ/σ
= 63 - 70/3
= -2.33333
Probability value from Z-Table:
P(x<63) = 0.0098153
Approximately to the nearest thousandth = 0.010
Therefore, the probability that a randomly selected student will be shorter than 63 inches tall, to the nearest thousandth is 0.010.
Answer:
Standard deviation of a normal data distribution is a measure of data dispersion.
Step-by-step explanation:
Standard deviation is used to measure dispersion which is present around the mean data.
The value of standard deviation will never be negative.
The greater the spread, the greater the standard deviation.
Steps-
1. At first, the mean value should be discovered.
2.Then find out the square of it's distance to mean value.
3.Then total the values
4.Then divide the number of data point.
5.the square root have to be taken.
Formula-
SD=
Advantage-
It is used to measure dispersion when mean is used as measure of central tendency.
First, 10 to the second power equals to 100. 100 divided by 3 equals to 33.33. 33.33 x 7 equals to 233.33. So the answer is 233.33.
Answer:
False
Step-by-step explanation:
x + 3 < -5
x < -8
-x > -8
x < 8
Both aren't same
Answer and Step-by-step explanation:
You got everything correct so far except for #4.
4. Yes, it is 1. But it would be in months.
So you would put:
1 month = x
12 months = 1 year.
Since the population increases by 1.5 times a <em>month.</em>
For question number 3.
The equation should be:
<- Function
<- Function when x is 12 months (1 year)
(Put those both the same way I put it.)
It gives you the equation to work with, you just have to plug in the values.
1.5 is in the parenthesis because it needs to be the one that is raised by an exponent.
100 is the initial population, so it stays on the outside.
x is the exponent