The equation of the hyperbola with directrices at x = ±2 and foci at (5, 0) and (−5, 0) is 
<h3>How to determine the equation of the hyperbola?</h3>
The given parameters are:
- Directrices at x = ±2
- Foci at (5, 0) and (−5, 0)
The foci of a hyperbola are represented as:
Foci = (k ± c, h)
The center is:
Center = (h,k)
And the directrix is:
Directrix, x = h ± a²/c
By comparison, we have:
k ± c = ±5
h = 0
h ± a²/c = ±2
Substitute h = 0 in h ± a²/c = ±2
0 ± a²/c = ±2
This gives
a²/c = 2
Multiply both sides by c
a² = 2c
k ± c = ±5 means that:
k ± c = 0 ± 5
By comparison, we have:
k = 0 and c = 5
Substitute c = 5 in a² = 2c
a² = 2 * 5
a² = 10
Next, we calculate b using:
b² = c² - a²
This gives
b² = 5² - 10
Evaluate
b² = 15
The hyperbola is represented as:

So, we have:

Evaluate

Hence, the equation of the hyperbola is 
Read more about hyperbola at:
brainly.com/question/3405939
#SPJ1
Answer:
Rotation and Translation
Step-by-step explanation:
Answer:
Step-by-step explanation:
The model fo the shell is given by the following equation of equilibrium:

This first-order differential equation has separable variables, which are cleared herein:

The solution of this integral is:
![t = -\frac{m}{2b}\cdot \left[\tan^{-1} \left(\frac{v}{\sqrt{\frac{m\cdot g}{b} } }\right) - \tan^{-1} \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } }\right)\right]](https://tex.z-dn.net/?f=t%20%3D%20-%5Cfrac%7Bm%7D%7B2b%7D%5Ccdot%20%5Cleft%5B%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7Bv%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%5Cright%29%20-%20%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%5Cright%29%5Cright%5D)

![\frac{v}{\sqrt{\frac{m\cdot g}{b} } }=\tan \left[-\frac{2\cdot b\cdot t}{m} + \tan^{-1}\left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\right]](https://tex.z-dn.net/?f=%5Cfrac%7Bv%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%3D%5Ctan%20%5Cleft%5B-%5Cfrac%7B2%5Ccdot%20b%5Ccdot%20t%7D%7Bm%7D%20%2B%20%5Ctan%5E%7B-1%7D%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%5Cright%5D)
![v = \sqrt{\frac{m\cdot g}{b} } \left [\frac{\tan \left(-\frac{2\cdot b \cdot t}{m} \right)+ \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)}{1 - \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\cdot \tan \left(-\frac{2\cdot b \cdot t}{m} \right) }\right]](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%5Cleft%20%5B%5Cfrac%7B%5Ctan%20%5Cleft%28-%5Cfrac%7B2%5Ccdot%20b%20%5Ccdot%20t%7D%7Bm%7D%20%20%5Cright%29%2B%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%7D%7B1%20-%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%5Ccdot%20%5Ctan%20%5Cleft%28-%5Cfrac%7B2%5Ccdot%20b%20%5Ccdot%20t%7D%7Bm%7D%20%20%5Cright%29%20%7D%5Cright%5D)