Let two number A and B, and A >B
as we know A+10=2B① && A+B =38②
①-② solve that
B=16 so A=22
so, they are 16 and 22
The first one is 0.97 the second one is 6
Answer: 22%
Step-by-step explanation:
Answer:
The statement is true for every n between 0 and 77 and it is false for 
Step-by-step explanation:
First, observe that, for n=0 and n=1 the statement is true:
For n=0: 
For n=1: 
From this point we will assume that 
As we can see,
and
. Then,

Now, we will use the formula for the sum of the first 4th powers:

Therefore:

and, because
,

Observe that, because
and is an integer,

In concusion, the statement is true if and only if n is a non negative integer such that 
So, 78 is the smallest value of n that does not satisfy the inequality.
Note: If you compute
for 77 and 78 you will obtain:
Answer:
Step-by-step explanation:
We first need to define a couple of variables. Let s = the cost of 1 squash and z = the cost of 1 zucchini.
Now lets translate the words into algebra:
"The cost of 5 squash and 2 zucchini is $1.32" ===> 5s + 2z = 1.32
"Three squash and 1 zucchini cost $0.75" ===> 3s + z = 0.75
There are several ways to solve systems of equations. Let's use substitution. We can find what z equals in terms of s by manipulating the second equation:
3s + z = 0.75
-3s -3s
------------ -------------
z = -3s +0.75
Now lets substitute (-3s + 0.75) into the first equation for z, then solve for s:
5s + 2(-3s + 0.75) = 1.32
Can you handle it from here?
(Hint: Once you have solved for s, you can substitute that value back into either of the equations and solve for z.)