Im not 100% sure but
A: 10
B: 5
C: 15
D: 30
for:
A: 30 x 1/3
B: 15 x 1/3
C: 5/ 1/3
D: 10/ 1/3
Hello,
so all you have to do is match the abbreviations to the triangles. The abbreviations stand for what is the SAME in both triangles, denoted by similar markings on equal sides and angles.
Abbreviations:
SSS = Side-Side-Side
SAS = Side-Angle-Side
ASA = Angle-Side-Angle
AAS = Angle-Angle-Side
HL = Hypotenuse-Leg
* Note - the angle side angle must go around the triangle in that order. ASA has the side BETWEEN the congruent angles.. SSA does NOT work.
(9.) ASA
(10.) AAS
(11.) SSS
(12.) No way to tell if congruent. (only 3 angles no side)
(13.) ASA
(14.) SAS
(15.) HL
Answer:
a

b

Step-by-step explanation:
From the question we are told that
The number of students in the class is N = 20 (This is the population )
The number of student that will cheat is k = 3
The number of students that he is focused on is n = 4
Generally the probability distribution that defines this question is the Hyper geometrically distributed because four students are focused on without replacing them in the class (i.e in the generally population) and population contains exactly three student that will cheat.
Generally probability mass function is mathematically represented as

Here C stands for combination , hence we will be making use of the combination functionality in our calculators
Generally the that he finds at least one of the students cheating when he focus his attention on four randomly chosen students during the exam is mathematically represented as

Here




Hence


Generally the that he finds at least one of the students cheating when he focus his attention on six randomly chosen students during the exam is mathematically represented as

![P(X \ge 1) =1- [ \frac{^{k}C_x * ^{N-k}C_{n-x}}{^{N}C_n}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7Bk%7DC_x%20%2A%20%5E%7BN-k%7DC_%7Bn-x%7D%7D%7B%5E%7BN%7DC_n%7D%5D%20)
Here n = 6
So
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{20 -3}C_{6-0}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B20%20-3%7DC_%7B6-0%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{17}C_{6}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B17%7DC_%7B6%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{1 * 12376}{38760}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B1%20%20%2A%20%2012376%7D%7B38760%7D%5D%20)

