Answer:
66.28% of students study more than 8 hours
Step-by-step explanation:
The percent of students study more than 8 hour can be calculated as
P(X>8)=?
P(X>8)=P((X-mean)/sd>(8-9.92)/4.54)
The calculated z-score is -0.42.
P(X>8)=P(Z>-0.42)
P(X>8)=P(0<Z<-0.42)+P(0<Z<∞)
P(X>8)=0.1628+0.5=0.6628.
Thus, 66.28% of students study more than 8 hours.
Answer:
5
Step-by-step explanation:
3/5 × 5
Divide through by 5
And you're left with 5
Answer:
How to solve your problem
−
7
2
−
2
2
+
3
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+y^{3}y-2y+5y^{3}-2y
−7y2−2y2+y3y−2y+5y3−2y
Simplify
1
Combine exponents
−
7
2
−
2
2
+
3
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+{\color{#c92786}{y^{3}y}}-2y+5y^{3}-2y
−7y2−2y2+y3y−2y+5y3−2y
−
7
2
−
2
2
+
4
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+{\color{#c92786}{y^{4}}}-2y+5y^{3}-2y
−7y2−2y2+y4−2y+5y3−2y
2
Combine like terms
−
7
2
−
2
2
+
4
−
2
+
5
3
−
2
{\color{#c92786}{-7y^{2}}}{\color{#c92786}{-2y^{2}}}+y^{4}-2y+5y^{3}-2y
−7y2−2y2+y4−2y+5y3−2y
−
9
2
+
4
−
2
+
5
3
−
2
{\color{#c92786}{-9y^{2}}}+y^{4}-2y+5y^{3}-2y
−9y2+y4−2y+5y3−2y
3
Combine like terms
−
9
2
+
4
−
2
+
5
3
−
2
-9y^{2}+y^{4}{\color{#c92786}{-2y}}+5y^{3}{\color{#c92786}{-2y}}
−9y2+y4−2y+5y3−2y
−
9
2
+
4
−
4
+
5
3
-9y^{2}+y^{4}{\color{#c92786}{-4y}}+5y^{3}
−9y2+y4−4y+5y3
4
Rearrange terms
−
9
2
+
4
−
4
+
5
3
{\color{#c92786}{-9y^{2}+y^{4}-4y+5y^{3}}}
−9y2+y4−4y+5y3
4
+
5
3
−
9
2
−
4
{\color{#c92786}{y^{4}+5y^{3}-9y^{2}-4y}}
y4+5y3−9y2−4y
Solution
4
+
5
3
−
9
2
−
4
This sequence (1.6, 0.8, 0.4, 0.2,... ) is geometric.
We have formula for any member of geometric sequence:

If a1=1.6 then:

The solution for all these equations is: q=0.5. We have: a1=1.6, q=0.5 and this is geometric sequence.