To solve for the missing steps, let's rewrite first the problem.
Given:
In a plane, line m is perpendicular to line t or m⟂t
line n is perpendicular to line t or n⟂t
Required:
Prove that line m and n are parallel lines
Solution:
We know that line t is the transversal of the lines m and n.
With reference to the figure above,
∠ 2 and ∠ 6 are right angles by definition of <u>perpendicular lines</u>. This states that if two lines are perpendicular with each other, they intersect at right angles.
So ∠ 2 ≅ ∠ 6. Since <u>corresponding</u> angles are congruent.
Therefore, line m and line n are parallel lines.
<span>
<em>ANSWERS: perpendicular lines, corresponding</em>
</span>
Answer:
$465 at Back Street
$515 at Main Street
Step-by-step explanation:
980 (total) - 50 (the difference between the two) = 930
930/2 = 465 (back street)
465 + 50 (the difference) = 515 ( main street)
CHECK: 465 + 515 = 980
.95 in decimal form and 95/100 as a fraction or 19/20
The car can travel 235.2 miles on 9.8 gallons. Just multiply 24 by 9.8.
We are asked to determine the correlation factor "r" of the given table. To do that we will first label the column for "Quality" as "x" and the column for "Easiness" as "y". Like this:
Now, we create another column with the product of "x" and "y". Like this:
Now, we will add another column with the squares of the values of "x". Like this:
Now, we add another column with the squares of the values of "y":
Now, we sum the values on each of the columns:
Now, to get the correlation factor we use the following formula:

Where:

Now we substitute the values, we get:

Solving the operations:

Therefore, the correlation factor is 0.858. If the correlation factor approaches the values of +1, this means that there is a strong linear correlation between the variables "x" and "y" and this correlation tends to be with a positive slope.