700. To find out what number a value is ten times as much as, divide by 10.
Answer:
La probabilidad que hay de que sea fin de semana es 
Step-by-step explanation:
La Probabilidad es la mayor o menor posibilidad de que ocurra un determinado suceso. En otras palabras, la probabilidad establece una relación entre el número de sucesos favorables y el número total de sucesos posibles. Entonces, la probabilidad de un suceso cualquiera A se define como el cociente entre el número de casos favorables (número de casos en los que puede ocurrir o no el suceso A) y el número total de casos posibles. Esta se denomina Ley de Laplace.

En este caso:
- número de casos favorables: 2 (cantidad de días del fin de semana)
- número de casos posibles: 7 (cantidad de días totales en la semana)
Reemplazando:
P(A)= 
<u><em>La probabilidad que hay de que sea fin de semana es </em></u>
<u><em></em></u>
Answer:
the angle of elevation is 12.56°
Step-by-step explanation:
the height of the ramp represents the opposite side and the length of the ramp the hypotenuse
we see that it has (angle, hypotenuse, opposite)
well to start we have to know the relationship between angles, legs and the hypotenuse
a: adjacent
o: opposite
h: hypotenuse
sin α = o/h
cos α= a/h
tan α = o/a
we choose the one with opposite and hypotenuse
sin α = o/h
sin α = 5ft / 23ft
sin α = 5/23
α = sin^-1 ( 5/23)
α = 12.56°
the angle of elevation is 12.56°
Answer:
∠1 = 50°
∠2 = ∠3 = 130°
Step-by-step explanation:
In an isosceles trapezoid, such as this one, the angles at either end of a base are congruent:
∠1 ≅ 50°
∠2 ≅ ∠3
The theorems applicable to transversals and parallel lines also apply to the sides joining the parallel bases. In particular, "consecutive interior angles are supplementary." That is, angles 1 and 2 are supplementary, for example.
∠2 = 180° -∠1 = 180° -50° = 130°
We already know angle 3 is congruent to this.
∠1 = 50°
∠2 = ∠3 = 130°
_____
<em>Additional comment</em>
It can be easier to see the congruence of the base angles if you remove the length of the shorter base from both bases. This collapses the figure to an isosceles triangle and makes it obvious that the base angles are congruent.
Alternatively, you can drop an altitude to the longer base from each end of the shorter base. That will create two congruent right triangles at either end of the figure. Those will have congruent corresponding angles.