Answer:
jkbgf7jhfdt7jceru9onvdtihdr
Answer:
Step-by-step explanation:
7) The formula for determining the area of a parallelogram is expressed as
Area = base × height.
Length of base = Area/height
Therefore,
Length of base = 7/2 = 3.5 feet
8) The formula for determining the area of a trapezoid is expressed as
Area = 1/2(a + b)h
Where
a and b are the length of the bases
h is the height. Therefore
21 = 1/2(2 + 4)h
21 = 3h
h = 21/3 = 7 inches
9) Area = base × height.
Height = Area/Length of base
Height = 28/14 = 2 inches
10) a and b are 10 inches each.
Area = 1/2(a + b)h
Therefore,
35 = 1/2(10 + 10)h
35 = 10h
h = 35/10
h = 3 inches
Use PEMDAS:
P Parentheses first
E Exponents (ie Powers and Square Roots, etc.)
MD Multiplication and Division (left-to-right)
AS Addition and Subtraction (left-to-right)
-----------------------------------------------------------------------

Please note that your x^3/4 is ambiguous. Did you mean (x^3) divided by 4
or did you mean x to the power (3/4)? I will assume you meant the first, not the second. Please use the "^" symbol to denote exponentiation.
If we have a function f(x) and its derivative f'(x), and a particular x value (c) at which to begin, then the linearization of the function f(x) is
f(x) approx. equal to [f '(c)]x + f(c)].
Here a = c = 81.
Thus, the linearization of the given function at a = c = 81 is
f(x) (approx. equal to) 3(81^2)/4 + [81^3]/4
Note that f '(c) is the slope of the line and is equal to (3/4)(81^2), and f(c) is the function value at x=c, or (81^3)/4.
What is the linearization of f(x) = (x^3)/4, if c = a = 81?
It will be f(x) (approx. equal to)