Step-by-step explanation:
∫₀³⁰ (r/V C₀ e^(-rt/V)) dt
If u = -rt/V, then du = -r/V dt.
∫ -C₀ e^u du
-C₀ ∫ e^u du
-C₀ e^u + C
-C₀ e^(-rt/V) + C
Evaluate between t=0 and t=30.
-C₀ e^(-30r/V) − -C₀ e^(-0r/V)
-C₀ e^(-30r/V) + C₀
C₀ (-e^(-30r/V) + 1)
I got the same answer. Try changing the lowercase v to an uppercase V.
Answer:

Step-by-step explanation:

Step 1: Divide the numbers

Step 2: Simplify

Step 3: Simplify

Therefore, the simplified answer is 
Answer:
B
Step-by-step explanation:
X is the domain.
The function comes from -∞ and goes to ∞
So B is the answer.
The function has a horizontal asymptote at y = 1
<h3>How to determine the
horizontal asymptote?</h3>
The function is given as:
f(x) = -4/x + 1
Set the radicand to 0.
So, we have:
y = 0 + 1
Evaluate
y = 1
Hence, the function has a horizontal asymptote at y = 1
Read more about horizontal asymptote at:
brainly.com/question/4084552
#SPJ1