1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
3 years ago
14

PLEASE HELP ITS URGENT DONT GUESS (also if you get it right ill mark you as brainliest)

Mathematics
1 answer:
max2010maxim [7]3 years ago
5 0

Answer:

106.83ft

Step-by-step explanation:

29 + 29 + 19 = 77ft

Now we must calculate the semicircle, The diameter is 19ft

19ft x 3.14 = 59.66

since 59.66 would be a full circle, you divide it in half.

59.66/2=29.83

77+29.83=106.83ft

You might be interested in
<img src="https://tex.z-dn.net/?f=785y%20%5Ctimes%20x%20%7C8%7C%20" id="TexFormula1" title="785y \times x |8| " alt="785y \times
steposvetlana [31]

The anwser is: 6280yx²

7 0
2 years ago
Read 2 more answers
List some words that might be used in a real-world example that can be expressed with an addition problem. (For example: increas
IRISSAK [1]

Answer:

additional

(whatever number) more

consistently increasing

8 0
2 years ago
10+z=x what is the answer
Basile [38]

First you had subtract by ten from both sides of equation form.

10+z-10=x-10

Then simplify by equation.

z=x-10

Final answer: \boxed{z=x-10}

Hope this helps!

And thank you for posting your question at here on brainly, and have a great day.

-Charlie

8 0
3 years ago
Let A = {a, b, c}, B = {b, c, d}, and C = {b, c, e}. (a) Find A ∪ (B ∩ C), (A ∪ B) ∩ C, and (A ∪ B) ∩ (A ∪ C). (Enter your answe
wariber [46]

Answer:

(a)

A\ u\ (B\ n\ C) = \{a,b,c\}

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

(A\ u\ B)\ n\ C = (A\ u\ B)\ n\ (A\ u\ C)

(b)

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

A\ n\ (B\ u\ C) = (A\ n\ B)\ u\ (A\ n\ C)

(c)

(A - B) - C = \{a\}

A - (B - C) = \{a,b,c\}

<em>They are not equal</em>

<em></em>

Step-by-step explanation:

Given

A= \{a,b,c\}

B =\{b,c,d\}

C = \{b,c,e\}

Solving (a):

A\ u\ (B\ n\ C)

(A\ u\ B)\ n\ C

(A\ u\ B)\ n\ (A\ u\ C)

A\ u\ (B\ n\ C)

B n C means common elements between B and C;

So:

B\ n\ C = \{b,c,d\}\ n\ \{b,c,e\}

B\ n\ C = \{b,c\}

So:

A\ u\ (B\ n\ C) = \{a,b,c\}\ u\ \{b,c\}

u means union (without repetition)

So:

A\ u\ (B\ n\ C) = \{a,b,c\}

Using the illustrations of u and n, we have:

(A\ u\ B)\ n\ C

(A\ u\ B)\ n\ C = (\{a,b,c\}\ u\ \{b,c,d\})\ n\ C

Solve the bracket

(A\ u\ B)\ n\ C = (\{a,b,c,d\})\ n\ C

Substitute the value of set C

(A\ u\ B)\ n\ C = \{a,b,c,d\}\ n\ \{b,c,e\}

Apply intersection rule

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C)

In above:

A\ u\ B = \{a,b,c,d\}

Solving A u C, we have:

A\ u\ C = \{a,b,c\}\ u\ \{b,c,e\}

Apply union rule

A\ u\ C = \{b,c\}

So:

(A\ u\ B)\ n\ (A\ u\ C) = \{a,b,c,d\}\ n\ \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

<u>The equal sets</u>

We have:

A\ u\ (B\ n\ C) = \{a,b,c\}

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

So, the equal sets are:

(A\ u\ B)\ n\ C and (A\ u\ B)\ n\ (A\ u\ C)

They both equal to \{b,c\}

So:

(A\ u\ B)\ n\ C = (A\ u\ B)\ n\ (A\ u\ C)

Solving (b):

A\ n\ (B\ u\ C)

(A\ n\ B)\ u\ C

(A\ n\ B)\ u\ (A\ n\ C)

So, we have:

A\ n\ (B\ u\ C) = \{a,b,c\}\ n\ (\{b,c,d\}\ u\ \{b,c,e\})

Solve the bracket

A\ n\ (B\ u\ C) = \{a,b,c\}\ n\ (\{b,c,d,e\})

Apply intersection rule

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = (\{a,b,c\}\ n\ \{b,c,d\})\ u\ \{b,c,e\}

Solve the bracket

(A\ n\ B)\ u\ C = \{b,c\}\ u\ \{b,c,e\}

Apply union rule

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = (\{a,b,c\}\ n\ \{b,c,d\})\ u\ (\{a,b,c\}\ n\ \{b,c,e\})

Solve each bracket

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}\ u\ \{b,c\}

Apply union rule

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

<u>The equal set</u>

We have:

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

So, the equal sets are:

A\ n\ (B\ u\ C) and (A\ n\ B)\ u\ (A\ n\ C)

They both equal to \{b,c\}

So:

A\ n\ (B\ u\ C) = (A\ n\ B)\ u\ (A\ n\ C)

Solving (c):

(A - B) - C

A - (B - C)

This illustrates difference.

A - B returns the elements in A and not B

Using that illustration, we have:

(A - B) - C = (\{a,b,c\} - \{b,c,d\}) - \{b,c,e\}

Solve the bracket

(A - B) - C = \{a\} - \{b,c,e\}

(A - B) - C = \{a\}

Similarly:

A - (B - C) = \{a,b,c\} - (\{b,c,d\} - \{b,c,e\})

A - (B - C) = \{a,b,c\} - \{d\}

A - (B - C) = \{a,b,c\}

<em>They are not equal</em>

4 0
3 years ago
Learning
bazaltina [42]

Answer:

2:25

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • PLEAAASE HELP ME ON #5 PLEAAASE IM DESPERATE IM RLLY SYRESSSEDDD TAKE 45 PTS
    5·2 answers
  • Camille has no more than $20.00 to spend each week for lunch and bus
    10·1 answer
  • What is the answer x^2+28=0
    7·2 answers
  • What property is shown in 3x+4y+2+6y+3
    14·1 answer
  • Find 3/4ths of 40 ......................................................
    5·2 answers
  • 1. The following system has NO SOLUTION. Explain with specific values why the system has no solutions.
    9·2 answers
  • What is the least common multiple (LCM) that could be
    5·1 answer
  • Pls help me find the answer quickly!
    12·2 answers
  • <img src="https://tex.z-dn.net/?f=4x%20%5Csqrt%5B%20%2B%2015%20-%2015%5D%7B%3F%7D%20" id="TexFormula1" title="4x \sqrt[ + 15 - 1
    15·1 answer
  • What is the formula for circumference? а a C = (pi) bo C = 2r с C = (pi) r2​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!