Answer:
answer in the picture
Step-by-step explanation:
Answer:
Step-by-step explanation:
Total number of antenna is 15
Defective antenna is 3
The functional antenna is 15-3=12.
Now, if no two defectives are to be consecutive, then the spaces between the functional antennas must each contain at most one defective antenna.
So,
We line up the 13 good ones, and see where the bad one will fits in
__G __ G __ G __ G __ G __G __ G __ G __ G __ G __ G __ G __G __
Each of the places where there's a line is an available spot for one (and no more than one!) bad antenna.
Then,
There are 14 spot available for the defective and there are 3 defective, so the arrange will be combinational arrangement
ⁿCr= n!/(n-r)!r!
The number of arrangement is
14C3=14!/(14-3)!3!
14C3=14×13×12×11!/11!×3×2
14C3=14×13×12/6
14C3=364ways
The answer to this problem would be 12. If you need to show work just comment.
3x + 22 is the equation that represents the perimeter of the triangle. 4x + 10 is the perimeter of the rectangle. Setting the two equal:

and collecting like terms:

We find that the perimeter of both shapes is equal to 11 units.