1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
2 years ago
7

Which is a factor of x2 – 9x + 14? x – 9 x – 2 x + 5 x + 7

Mathematics
2 answers:
Nadya [2.5K]2 years ago
7 0

Answer:

The binomial: (x-2) (second option of the list) is a factor of the given trinomial

Step-by-step explanation:

You are looking for two binomial factors of the form; (x+a) and (x+b), with values "a" and "b" such that:

Their product "a times b" results in: "+14" (the numerical term in the initial trinomial x^2-9x+14,

and their combining "a+b" results in "-9" (the coefficient in the middle term of the trinomial)

Such number "a" and "b" are: "-2" and "-7".

We can see by multiplying the binomials formed with these numbers:

(x-2) and (x-7) that their product indeed renders the original trinomial:

(x-2) (x-7)= x^2-7x-2x+14=x^2-9x+14

therefore, the binomials (x-2) and (x-7) are factors of the given trinomial.

The only one shown among the four possible options is then: (x-2)

agasfer [191]2 years ago
3 0

Answer:

x-2

Step-by-step explanation:

Let's factor x2−9x+14

x2−9x+14

The middle number is -9 and the last number is 14.

Factoring means we want something like

(x+_)(x+_)

Which numbers go in the blanks?

We need two numbers that...

Add together to get -9

Multiply together to get 14

Can you think of the two numbers?

Try -2 and -7:

-2+-7 = -9

-2*-7 = 14

Fill in the blanks in

(x+_)(x+_)

with -2 and -7 to get...

(x-2)(x-7)

Answer:

(x−2)(x−7)

You might be interested in
Can anybody help me with this ?
BabaBlast [244]

Answer:

1st scenario: 163.3°

2nd scenario: 125.2°

3rd scenario: 142.3°

Step-by-step explanation:

1st scenario: angles 1 and 2 form a linear pair and add up to 180

2nd scenario: angles 1 and 4 are same-side interior and add up to 180

3rd scenario: angles 1 and 8 are corresponding and equal; if angle 7 is 37.7 then angle 8 is 142.3 (they form a linear pair). Since angles 1 and 8 are equal then angle 1 is also 142.3

6 0
2 years ago
Lucy collects data from a random sample of seventh-graders. Out of 40 respondents, 7 attend after-school programs. Of the 200 se
Shalnov [3]

Answer:

35

Step-by-step explanation:

For every 40 students, you add 7

Ratio:

Students : Students in afterschool programs

40:7

80:14

120:21

160:28

200:35

8 0
2 years ago
PLEASE CAN SOMEONE find the value of the trigonmetric ratio
VashaNatasha [74]
For this case we have the following trigonometric relationship:
 sine (x) = C.O / h
 Where,
 x: angle
 C.O: opposite leg
 h: hypotenuse
 Substituting values:
 sine (C) = 9/41
 Answer:
 
the value of the trigonometric ratio is:
 
sine (C) = 9/41
5 0
2 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Find (12x+12)−(−5x+8). step by step answers please.
Bas_tet [7]

Answer:


Step-by-step explanation:

First add 5x to 12x which becomes 17x and subtract 8 from 12 which becomes 4. So the answer is 17x+4!

6 0
2 years ago
Other questions:
  • Simplify the expression.
    7·1 answer
  • Latasha has a savings account with $20 that earns 1% simple interest per year.how much money will she have in 8 years, to the ne
    10·1 answer
  • Which of the following is an arithmetic sequence?
    8·1 answer
  • Write a decimal equation that has a product of 3.15 do not use one as a factor
    11·1 answer
  • A system of equations that has at least one solution is called inconsistent.
    15·2 answers
  • Muffins sell 3 for $1.25. About how much will a dozen cost?
    5·2 answers
  • A line passes through the points (3, –1) and (5, 4). What is the slope of the line?
    6·2 answers
  • What is the difference of 85.23 and 2.675?
    8·1 answer
  • Calculate the percent yield if 500 grams of C7H8 makes 255 grams of C7H7NO2
    8·2 answers
  • can anyone help me with this slope-length activity? whoever answers will get 5 stars and brainliest, i know its a bit of work so
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!