1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
3 years ago
15

PLEASE ONLY ANSWER IF YOU KNOW THE ANSWER!!! I WILL GOVE BRAINIEST IF CORRECt

Mathematics
1 answer:
Levart [38]3 years ago
5 0

Answer:

26 2/3 * \pi or about 74.31 cubic inches.

Step-by-step explanation:

You might be interested in
Help asap please:<br><br> Solve x-7y=16 for y
Pepsi [2]

Answer:

y = (x-16)/7

Step-by-step explanation:

x - 7y = 16

~Subtract x to both sides

-7y = 16 - x

~Divide -7 to everything

y = (16-x)/7

Best of Luck!

5 0
3 years ago
Read 2 more answers
A study of commuting times reports the travel times to work of a random sample of 1010 employed adults in Chicago. The mean is x
MrMuchimi

Answer:

standard error of the mean = 1.6960

Step-by-step explanation:

Given -

Mean (\overline{X}) = 53 minutes

Standard deviation ( s ) = 53.9 minutes

n = 1010

standard error of the mean  =  

\sigma _{\overline{X}}    =   \frac{s}{\sqrt{n}}

        = \frac{53.9}{\sqrt{1010}}

       =  1.6960

3 0
3 years ago
A=1/2•e•m <br> solve the following formula for e
Vedmedyk [2.9K]

(1 / 2) x e x meters =

1.35914091 meters

8 0
3 years ago
In a class there are
Inga [223]

Answer:

b

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
You have a large jar that initially contains 30 red marbles and 20 blue marbles. We also have a large supply of extra marbles of
Dima020 [189]

Answer:

There is a 57.68% probability that this last marble is red.

There is a 20.78% probability that we actually drew the same marble all four times.

Step-by-step explanation:

Initially, there are 50 marbles, of which:

30 are red

20 are blue

Any time a red marble is drawn:

The marble is placed back, and another three red marbles are added

Any time a blue marble is drawn

The marble is placed back, and another five blue marbles are added.

The first three marbles can have the following combinations:

R - R - R

R - R - B

R - B - R

R - B - B

B - R - R

B - R - B

B - B - R

B - B - B

Now, for each case, we have to find the probability that the last marble is red. So

P = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} + P_{8}

P_{1} is the probability that we go R - R - R - R

There are 50 marbles, of which 30 are red. So, the probability of the first marble sorted being red is \frac{30}{50} = \frac{3}{5}.

Now the red marble is returned to the bag, and another 3 red marbles are added.

Now there are 53 marbles, of which 33 are red. So, when the first marble sorted is red, the probability that the second is also red is \frac{33}{53}

Again, the red marble is returned to the bag, and another 3 red marbles are added

Now there are 56 marbles, of which 36 are red. So, in this sequence, the probability of the third marble sorted being red is \frac{36}{56}

Again, the red marble sorted is returned, and another 3 are added.

Now there are 59 marbles, of which 39 are red. So, in this sequence, the probability of the fourth marble sorted being red is \frac{39}{59}. So

P_{1} = \frac{3}{5}*\frac{33}{53}*\frac{36}{56}*\frac{39}{59} = \frac{138996}{875560} = 0.1588

P_{2} is the probability that we go R - R - B - R

P_{2} = \frac{3}{5}*\frac{33}{53}*\frac{20}{56}*\frac{36}{61} = \frac{71280}{905240} = 0.0788

P_{3} is the probability that we go R - B - R - R

P_{3} = \frac{3}{5}*\frac{20}{53}*\frac{33}{58}*\frac{36}{61} = \frac{71280}{937570} = 0.076

P_{4} is the probability that we go R - B - B - R

P_{4} = \frac{3}{5}*\frac{20}{53}*\frac{25}{58}*\frac{33}{63} = \frac{49500}{968310} = 0.0511

P_{5} is the probability that we go B - R - R - R

P_{5} = \frac{2}{5}*\frac{30}{55}*\frac{33}{58}*\frac{36}{61} = \frac{71280}{972950} = 0.0733

P_{6} is the probability that we go B - R - B - R

P_{6} = \frac{2}{5}*\frac{30}{55}*\frac{25}{58}*\frac{33}{63} = \frac{49500}{1004850} = 0.0493

P_{7} is the probability that we go B - B - R - R

P_{7} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{33}{63} = \frac{825}{17325} = 0.0476

P_{8} is the probability that we go B - B - B - R

P_{8} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{30}{65} = \frac{750}{17875} = 0.0419

So, the probability that this last marble is red is:

P = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} + P_{8} = 0.1588 + 0.0788 + 0.076 + 0.0511 + 0.0733 + 0.0493 + 0.0476 + 0.0419 = 0.5768

There is a 57.68% probability that this last marble is red.

What's the probability that we actually drew the same marble all four times?

P = P_{1} + P_{2}

P_{1} is the probability that we go R-R-R-R. It is the same P_{1} from the previous item(the last marble being red). So P_{1} = 0.1588

P_{2} is the probability that we go B-B-B-B. It is almost the same as P_{8} in the previous exercise. The lone difference is that for the last marble we want it to be blue. There are 65 marbles, 35 of which are blue.

P_{2} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{35}{65} = \frac{875}{17875} = 0.0490

P = P_{1} + P_{2} = 0.1588 + 0.0490 = 0.2078

There is a 20.78% probability that we actually drew the same marble all four times

3 0
3 years ago
Other questions:
  • What is the molar mass dinitrogen monoxide?
    15·1 answer
  • A quarter is 1.75mm . How's tall is a $20 stack of quarter
    8·1 answer
  • About what percentage of the data lies within 2 standard deviations of the mean in a normal distribution?
    10·1 answer
  • What is 762x44 explain your work
    11·1 answer
  • Please help me please please please
    11·1 answer
  • How do I solve this problem
    12·1 answer
  • Write the equation in slope-intercept form (y = mx + b).
    7·1 answer
  • 58+(4x-4)<br> What is the answer <br> Give me a step by step
    15·1 answer
  • Determine the domain and range for the relation
    13·1 answer
  • HELP ASAP PLS
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!