Ok so given the point (r, theta)
The corresponding Cartesian point is (r*sin(theta), r* cos(theta)) you can think about this by analyzing the points on a unit circle which is a graph of a polar circle with radius 1 and angle theta
The domain is about how far left-to-right the graph goes.
In relation to the x-axis, the graph starts at x = –3 (with an open circle at –3) and then continues over to the right forever.
This is the shown in the picture with the red markup.
In interval notation, this is (-3, infinity).
Remember to use that left-to-right orientation for interval notation!
The range is in turn about how low to how high the graph goes.
On the graph, I’d do the same thing I did on the red marked up graph and compare the graph to the y-axis.
The graph starts down at y = –5 (with an open circle at –5) and then continues on up forever.
In interval notation, this is (-5, infinity).
Answer:
15.51
Step-by-step explanation:
14.91x4%=.60
14.91+.60=15.51
Answers:
- <u>24000 dollars</u> invested at 4%
- <u>18000 dollars</u> was invested at 7%
======================================================
Work Shown:
x = amount invested at 4%
If she invests x dollars at 4%, then the rest (42000-x) must be invested at the other rate of 7%
She earns 0.04x dollars from that first account and 0.07(42000-x) dollars from the second account
This means we have
0.04x+0.07(42000-x)
0.04x+0.07*42000-0.07x
0.04x+2940-0.07x
-0.03x+2940
This represents the total amount of money earned after 1 year.
We're told the amount earned in interest is $2220, so we can say,
-0.03x+2940 = 2220
-0.03x = 2220-2940
-0.03x = -720
x = -720/(-0.03)
x = 24000 dollars is the amount invested at 4%
42000-x = 42000-24000 = 18000 dollars was invested at 7%
----------------------
As a check, we can see that
18000+24000 = 42000
and also
0.04x = 0.04*24000 = 960 earned from the first account
0.07*18000 = 1260 earned from the second account
1260+960 = 2220 is the total interest earned from both accounts combined
This confirms our answers.
Step-by-step explanation:
answer is first option,,,