A function WILL NOT have any repeating x values...they can have repeating y values, just not the x ones.
so ur function is { (1,2), (3,2), (5,7)}
Answer:
a. 11.26 % b. 6.76 %. It appears so since 6.76 % ≠ 15 %
Step-by-step explanation:
a. This is a binomial probability.
Let q = probability of giving out wrong number = 15 % = 0.15
p = probability of not giving out wrong number = 1 - q = 1 - 0.15 = 0.75
For a binomial probability, P(x) = ⁿCₓqˣpⁿ⁻ˣ. With n = 10 and x = 1, the probability of getting a number wrong P(x = 1) = ¹⁰C₁q¹p¹⁰⁻¹
= 10(0.15)(0.75)⁹
= 1.5(0.0751)
= 0.1126
= 11.26 %
b. At most one wrong is P(x ≤ 1) = P(0) + P(1)
= ¹⁰C₀q⁰p¹⁰⁻⁰ + ¹⁰C₁q¹p¹⁰⁻¹
= 1 × 1 × (0.75)¹⁰ + 10(0.15)(0.75)⁹
= 0.0563 + 0.01126
= 0.06756
= 6.756 %
≅ 6.76 %
Since the probability of at most one wrong number i got P(x ≤ 1) = 6.76 % ≠ 15 % the original probability of at most one are not equal, it thus appears that the original probability of 15 % is wrong.
The answer is 50 y squared minus 4 x squared
Answer:
The probability that the message will be wrong when decoded is 0.05792
Step-by-step explanation:
Consider the provided information.
To reduce the chance or error, we transmit 00000 instead of 0 and 11111 instead of 1.
We have 5 bits, message will be corrupt if at least 3 bits are incorrect for the same block.
The digit transmitted is incorrectly received with probability p = 0.2
The probability of receiving a digit correctly is q = 1 - 0.2 = 0.8
We want the probability that the message will be wrong when decoded.
This can be written as:

Hence, the probability that the message will be wrong when decoded is 0.05792