Answer:
The "short tail" dominant allele is easier to eliminate by selective breeding.
Explanation:
The only way for a recessive allele to be expressed (be visible) is when it appears as recessive homozygotic. These means the organisms need to have 2 copies of the gene. Selective breeding is based on the characteristics that one can see, so if the organism shows the "dilute" phenotype you can keep reproducing this individuals and get rid of the dominant allele.
On the other hand if you have a population with the dominant phenotype, you discard all the ones that have a recessive trait and you breed the dominant phenotype you could still get individuals with the recessive phenotype and individuals that express the dominant phenotype but are heterozygous.
Water molecules have covalent bonds. Each molecule consists of two hydrogen and oxygen covalent bonds. However, when water molecules are placed together, as they are normally, the hydrogen atoms in each molecule can form hydrogen bonds with the oxygen atom of other molecules.
Answer:
Relative humidity, RH
Explanation:
RH, is the ratio of the amount of water vapor present in the air to the maximum amount of water vapor needed for saturation at a certain pressure and temperature
That is the second planet Venus
Answer:
Examples of environmental factors that may alter salivary peroxidase include periodontitis, oral hygiene, presence of heavy metal ions, bacteria (e.g., <em>Streptococcus gordonii</em>), anaerobic conditions, temperature, pH, etc.
Explanation:
Peroxidase is an enzyme found in all aerobic cells that act to convert toxic hydrogen peroxide (H2O2) into dioxygen (O2) and water (H2O). This enzyme plays an important non-specific defensive role against proliferating micro-organisms that cause periodontal diseases such as periodontitis, which is a serious inflammatory disease affecting the tissues around the teeth. The most common environmental factors influencing the development of periodontitis include oral hygiene, smoking and age. In this regard, it has recently been shown that there is a positive correlation between salivary peroxidase activity and periodontal health, especially in non-smoker individuals. In consequence, it is expected that smoker individuals are more prone to suffer periodontal diseases by reduction of the salivary peroxidase levels.