Answer:
72 I think
Step-by-step explanation:
I'm not 100% sure but I think its 72
Answer:
One of the sides is 6 cm and the other is 8 cm
Step-by-step explanation:
Let's call the unknown sides a and b. From the perimeter information (24 cm) we have:
a + b + hypotenuse = 24
a + b + 10 = 24
a + b = 14
b = 14 - a
So now we can right the Pythagorean theorem as follows:

and from this expression in factor form to be zero a must be 6 or a must be 8.
Therefore the solutions are a = 6 (and therefore b = 14 - 6 = 8)
or a = 8 (and therefore b = 14 - 8 = 6)
Each line indicates the amount of a certain object.
We already know that the value of the green line is 15, all that is left to do is find the rest . . .
<u>Values</u>
Red Line: 20
Orange Line: 60
Green Line: 15
turquoise Line: 45
Blue Line: 65
Your welcome :3
Answer:
because y and x are equivalent and equal 15
Step-by-step explanation:
Answer:
a

b

Step-by-step explanation:
From the question we are told that
The number of students in the class is N = 20 (This is the population )
The number of student that will cheat is k = 3
The number of students that he is focused on is n = 4
Generally the probability distribution that defines this question is the Hyper geometrically distributed because four students are focused on without replacing them in the class (i.e in the generally population) and population contains exactly three student that will cheat.
Generally probability mass function is mathematically represented as

Here C stands for combination , hence we will be making use of the combination functionality in our calculators
Generally the that he finds at least one of the students cheating when he focus his attention on four randomly chosen students during the exam is mathematically represented as

Here




Hence


Generally the that he finds at least one of the students cheating when he focus his attention on six randomly chosen students during the exam is mathematically represented as

![P(X \ge 1) =1- [ \frac{^{k}C_x * ^{N-k}C_{n-x}}{^{N}C_n}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7Bk%7DC_x%20%2A%20%5E%7BN-k%7DC_%7Bn-x%7D%7D%7B%5E%7BN%7DC_n%7D%5D%20)
Here n = 6
So
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{20 -3}C_{6-0}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B20%20-3%7DC_%7B6-0%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{17}C_{6}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B17%7DC_%7B6%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{1 * 12376}{38760}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B1%20%20%2A%20%2012376%7D%7B38760%7D%5D%20)

