1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
3 years ago
8

The function f(x) = x is translated 6 units right and 8 units up. Which function represents the transformation?

Mathematics
1 answer:
tensa zangetsu [6.8K]3 years ago
6 0

Answer: g(x)=(x-6)+8

You might be interested in
The elements that compose seawater, along with the corresponding percents, are shownin the table.Mrs. Buller collects a 500-ml s
belka [17]

Answer: Mrs.Buller collects a 500-ml sample of seawater for her chemistry class, and it has 1.94% of chlorine, we have to determine the amount of chlorine in the sample:

\begin{gathered} C=\frac{1.94}{100}\times500=9.7ml \\ C=9.7ml \end{gathered}

Therefore the chlorine content in 500ml of water is 9.7ml.

3 0
1 year ago
I need help i will mark you brainliest​
Reil [10]

Answer:

Step-by-step explanation:

you need to draw a leaf plot

7 0
3 years ago
You are given the following sequence:
borishaifa [10]
<h2>                     Question No 1</h2>

Answer:

7.5 is the 4th term of the sequence 60, 30, 15, 7.5, ... .

In other words:   \boxed{a_4=7.5}

Step-by-step explanation:

Considering the sequence

60, 30, 15, 7.5, ...

As we know that a sequence is said to be a list of numbers or objects in a special order.

so

60, 30, 15, 7.5, ...  

is a sequence starting at 60 and decreasing by half each time. Here, 60 is the first term, 30 is the second term, 15 is the 3rd term and 7.5 is the fourth term.

In other words,

a_1=60,

\:a_2=30,

a_3=15, and

a_4=7.5

Therefore, 7.5 is the 4th term of the sequence 60, 30, 15, 7.5, ... .

In other words:   \boxed{a_4=7.5}

<h2>                       Question # 2</h2>

Answer:

The value of a subscript 5 is 16.

i.e. When n = 5, then h(5) = 16

Step-by-step explanation:

To determine:

What is the value of a subscript 5?

Information fetching and Solution Steps:

  • Chart with two rows.
  • The first row is labeled n.
  • The second row is labeled h of n. i.e. h(n)
  • The first row contains the numbers three, four, five, and six.
  • The second row contains the numbers four, nine, sixteen, and twenty-five.

Making the data chart

n                  3         4         5         6

h(n)               4         9         16       25

As we can reference a specific term in the sequence by using the subscript. From the table, it is clear that 'n' row represents the input and and 'h(n)' represents the output.

So, when n = 5, the value of subscript 5 corresponds with 16. In other words: When n = 5, then h(5) = 16

Therefore, the value of a subscript 5 is 16.

<h2>                         Question # 3</h2>

Answer:

We determine that the sequence 33, 31, 28, 24, 19, … is neither arithmetic nor geometric.

Step-by-step explanation:

Considering the sequence

33, 31, 28, 24, 19, …

Lets calculate the common difference 'd' to determine if the sequence is Arithmetic or not.

\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n

d = 31 - 33 = -2

d = 28 - 31 = -3

d = 24 - 28 = -4

d = 19 - 24 = -5

As the common difference 'd' is not constant. It means the sequence is not Arithmetic.

Lets now calculate the common ratio 'r' to determine if the sequence is Geometric or not.

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_n}{a_{n-1}}

\frac{31}{33}=0.93939\dots ,\:\quad \frac{28}{31}=0.90322\dots ,\:\quad \frac{24}{28}=0.85714\dots ,\:\quad \frac{19}{24}=0.79166\dots

The ratio is not constant. It means the sequence is not Geometric.

From the above analysis, we determine that the sequence 33, 31, 28, 24, 19, … is neither arithmetic nor geometric.

<h2>                         Question # 4</h2>

Answer:

We determine that the sequence -99, -96, -92, -87, -81... is neither arithmetic nor geometric.

Step-by-step explanation:

From the description statement:

''negative 99 comma negative 96 comma negative 92 comma negative 87 comma negative 81 comma dot dot dot''.

The statement can be translated algebraically as

-99, -96, -92, -87, -81...

Lets calculate the common difference 'd' to determine if the sequence is Arithmetic or not.

\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n

-96-\left(-99\right)=3,\:\quad \:-92-\left(-96\right)=4,\:\quad \:-87-\left(-92\right)=5,\:\quad \:-81-\left(-87\right)=6

As the common difference 'd' is not constant. It means the sequence is not Arithmetic.

Lets now calculate the common ratio 'r' to determine if the sequence is Geometric or not.

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_n}{a_{n-1}}

\frac{-96}{-99}=0.96969\dots ,\:\quad \frac{-92}{-96}=0.95833\dots ,\:\quad \frac{-87}{-92}=0.94565\dots ,\:\quad \frac{-81}{-87}=0.93103\dots

The ratio is not constant. It means the sequence is not Geometric.

From the above analysis, we determine that the sequence -99, -96, -92, -87, -81... is neither arithmetic nor geometric.    

<h2>                      Question # 5</h2>

Step-by-step explanation:

Considering the sequence

12, 22, 30, 36, 41, …

\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n

22-12=10,\:\quad \:30-22=8,\:\quad \:36-30=6,\:\quad \:41-36=5

As the common difference 'd' is not constant. It means the sequence is not Arithmetic.

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_n}{a_{n-1}}

\frac{22}{12}=1.83333\dots ,\:\quad \frac{30}{22}=1.36363\dots ,\:\quad \frac{36}{30}=1.2,\:\quad \frac{41}{36}=1.13888\dots

The ratio is not constant. It means the sequence is not Geometric.

From the above analysis, we determine that the sequence 12, 22, 30, 36, 41, … is neither arithmetic nor geometric.                  

8 0
3 years ago
Jacob rode his bike 5 3/4 miles last week. This week,he rode 4 times as far as he rode last week. How many miles did Jacob ride
Bess [88]

Answer:

Hope this helps

Step-by-step explanation:

1. Make 5 3/4 into an improper fraction. That would be 23/4. 2. Write 4 in a fraction way. That would be 4/1. 3. Now do 23/4 X 4/1. That would be 92/4. 4. Turn it into a mixed number by doing 92 divided by 4. That would be 23. No fraction after 23. Jacob rode his bike 23 miles this week. :)

4 0
3 years ago
Read 2 more answers
Solve the proportion x/2=5/15
Slav-nsk [51]
\frac{x}{2}= \frac{5}{15}

x= \frac{5}{15}(2)

x= \frac{2}{3}


8 0
3 years ago
Read 2 more answers
Other questions:
  • Sam ran at 6km/h for 2h 20 mins. What distance did he run?
    14·2 answers
  • CAN I GET SOME HELP AND NOT SKIPPED?
    8·2 answers
  • Which number has the same value as the digit 8 in the number 41.089???
    14·1 answer
  • Pls help like plsss and thx
    8·2 answers
  • Solve and check: 3 x2 + 5x + 6 + x − 1 x + 2 = 7 x + 3
    12·1 answer
  • Is this a right triangle side lengths: 8 cm,10 cm,16 cm
    5·1 answer
  • Which function best models the data?
    9·1 answer
  • HELP ;( AAAAAAAA IVE BEEN ON THIS PRIBLEM FOR FIFTEEN MINS
    14·1 answer
  • A colony of 100 bacteria doubles in size every 60 hours. What will the population be 180 hours from now?
    12·1 answer
  • Use long division to divide.<br> (x5 + 2x12x² - 5x - 12) = (x² - 3)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!