Answer:
Although the vast majority of DNA in most eukaryotes is found in the nucleus, some DNA is present within the mitochondria of animals, plants, and fungi and within the chloroplasts of plants.
Explanation:
Answer:
S = V0 t + 1/2 a t^2
S = 5 m/s * 300 s + 1/2 * 1.2 m/s * (300 s^2)
S = 1500 m + .6 * 90000 m = 55,500 m
Check: V0 = 5 m/s
V2 = V0 + a t = 5 + 1.2 * 300 = 365 m/s
Vav = (V1 + V2) / 2 = (5 + 365) / 2 = 185 m/s (note uniform motion)
S = 185 * 300 = 55,500 m
We calculated V2 above at 365 m/s the speed after 300 sec
Answer:
A.
Explanation: both triple by 3
To solve this problem it is necessary to apply the kinematic equations of motion for speed and distance, as well as the concepts related to kinetic energy.
The change in the height of a body subject to gravity is given by

Where
h = Height
g =Gravity
t = time
Replacing with our values we have that the time is



From speed as a function of change between acceleration and time we have then that after 2.6 seconds the speed would be



The kinetic energy would be given by



Therefore the kinetic energy after 2.6s is 1070.16J