Answer:
The calcium carbonate is negatively impacted by increasing CO2 levels and decreasing pH in seawater
Answer:1. Pyruvate carboxylase
2. Phosphoenol pyruvate carboxy kinase
Explanation:
The conversion of pyruvate to phosphoenol pyruvate is catalyzed by two enzymes Pyruvate carboxylase and phosphoenol pyruvate carboxy kinase
1. Pyruvate carboxylase reaction
Pyruvate in the cytoplasm enters the mitochondria. Then, carboxylase of pyruvate to oxaloacetate is catalysed by a mitochondrial enzyme, pyruvate carboxylase. It needs the co-enzymes biotin and ATP.
The oxaloacetate formed has to be transported from the mitochondrial to the cytosol because further reaction of gluconeogenesis are taking place in cytosol.
2. Phoaphoenol pyruvate carboxy kinase (PEPCK)
In the cytoplasm, PEPCK enzyme then converts oxaloacetate to phoaphoenol pyruvate by removing a molecule of CO2. GTP or ITP donates the phosphate group.
The net effect of these two reactions is the conversion of pyruvate to phoaphoenol pyruvate. This circumverts the irreversible step in glycolysis catalyzed by pyruvate kinase (step 9 if glycolysis)
The ultimate source of energy (for most ecosystems) is the sun<span>. The ultimate fate of energy in ecosystems is for it to be lost as heat. Energy and nutrients are passed from organism to organism through the food chain as one organism eats another.</span>
Increasing water vapor leads to warmer temperatures, which causes more water vapor to be absorbed into the air. Warming and water absorption increase in a spiraling cycle. Hope it helps!
Answer:
When starfish were removed from their environment, the species richness of that area went down. This was because the starfish ate the mussels, and when the starfish were removed, the mussels became abundant and preyed on many of the other species.
This experiment showed that the starfish were a keystone species. A keystone species is a species that has a low biomass but a large impact on the community they are living in.